3.1.1 Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps: **Basis Step:** We verify that P(1) is true.

Inductive Step: We show that the conditional statement

 $P(k) \rightarrow P(k + 1)$ is true for all positive integers k.

The difference between weak induction and strong induction lies only in the induction hypothesis. In weak induction, we only assume that statement holds at k^{th} step, while in strong induction, we assume that the statement holds at all the steps from the base case to k^{th} step.

Worked Example.3.1

Example 3.1.1

Show that if n is a positive integer, then $1 + 2 + \dots + n = \frac{n(n+1)}{2}$. Solution:

Let P(n): 1 + 2 + ... $n = \frac{n(n+1)}{2}$ we must show that

- 1) Basis Step: P(1) is true
- 2) Inductive Step: If P(k) is true then P(k + 1) is true where k is a positive integer.

 $P(1) = \frac{1(1+1)}{2} = 1$ which is true.

we assume that $P(k): 1 + 2 + \dots + k = \frac{k(k+1)}{2}$ is true. Under this assumption, it must be shown that P(k + 1) is true.

i.e.
$$P(k + 1) = \frac{(k+1)(k+1+1)}{2} = \frac{(k+1)(k+2)}{2}$$

Now, $P(k + 1) = 1 + 2 + \dots + k + (k + 1) = \frac{k(k+1)}{2} + (k + 1)$
 $= \frac{k(k + 1) + 2(k + 1)}{2}$
 $= \frac{(k+1)(k + 2)}{2}$

P(k + 1) is true under th Thus, by method of induction, 1 + 2 + Prove that 3 divides $n^3 + 2n$ whenever n is a nonnegative integer. Solution

Let P(n) be the proposition that $n^3 + 2n$ is divisible by 3.

Basis Step: P(1): 1 + 2 = 3 is divisible by 3.

Inductive Step: we assume that P(k): $k^3 + 2k$ is divisible by 3.

 $P(k + 1) = (k + 1)^3 + 2(k + 1) = (k^3 + 3k^2 + 3k + 1) + 2(k + 1)$

 $= (k^3 + 2k) + 3(k^2 + k + 1))$ divisible by 3.

Hence proved.

Use mathematical induction to prove that $n^3 - n$ is divisible by 3, whenever n is a positive integer.

Solution

Let P(n) be the proposition that $n^3 - n$ is divisible by 3.

Basis Step: P(1): $1^3 - 1 = 0 = 0 \times 3$ is divisible by 3.

Inductive Step: we assume that $P(k): k^3 - k$ is divisible by 3. $P(k + 1) = (k + 1)^3 - (k + 1) = (k^3 + 3k^2 + 3k + 1) - (k + 1)$ $= (k^3 - k) + 3(k^2 + k))$ which is divisible by 3. This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the proof.

Use mathematical induction to show that

$$1 + 2 + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$$

for all nonnegative integers n.

Solution: Let P(n) be the proposition that $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$ for the integer *n*.

BASIS STEP: P(0) is true because $2^0 = 1 = 2^1 - 1$. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary nonnegative integer k. That is, we assume that

$$1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1.$$

To carry out the inductive step using this assumption, we must show that when we assume that P(k) is true, then P(k + 1) is also true. That is, we must show that

 $1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} = 2^{(k+1)+1} - 1 = 2^{k+2} - 1$

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (1 + 2 + 2^{2} + \dots + 2^{k}) + 2^{k+1}$$
$$\stackrel{\text{IH}}{=} (2^{k+1} - 1) + 2^{k+1}$$
$$= 2 \cdot 2^{k+1} - 1$$
$$= 2^{k+2} - 1.$$

Note that we used the inductive hypothesis in the second equation in this string of equalities to replace $1 + 2 + 2^2 + \dots + 2^k$ by $2^{k+1} - 1$. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction we know that P(n) is true for all nonnegative integers *n*. That is, $1 + 2 + \dots + 2^n = 2^{n+1} - 1$ for all nonnegative integers *n*.

Use mathematical induction to prove the inequality

 $n < 2^{n}$

for all positive integers *n*.

Solution: Let P(n) be the proposition that $n < 2^n$.

BASIS STEP: P(1) is true, because $1 < 2^1 = 2$. This completes the basis step.

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k) is true for an arbitrary positive integer k. That is, the inductive hypothesis P(k) is the statement that $k < 2^k$. To complete the inductive step, we need to show that if P(k) is true, then P(k + 1), which is the statement that $k + 1 < 2^{k+1}$ is true. That is, we need to show that if $k < 2^k$, then $k + 1 < 2^{k+1}$. To show that this conditional statement is true for the positive integer k, we first add 1 to both sides of $k < 2^k$, and then note that $1 \le 2^k$. This tells us that

$$k + 1 \stackrel{\text{IH}}{<} 2^k + 1 \le 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}.$$

This shows that P(k + 1) is true, namely, that $k + 1 < 2^{k+1}$, based on the assumption that P(k) is true. The induction step is complete.

Therefore, because we have completed both the basis step and the inductive step, by the principle of mathematical induction we have shown that $n < 2^n$ is true for all positive integers *n*.

Use mathematical induction to prove that $2^n < n!$ for every integer *n* with $n \ge 4$. (Note that this inequality is false for n = 1, 2, and 3.)

Solution: Let P(n) be the proposition that $2^n < n!$.

BASIS STEP: To prove the inequality for $n \ge 4$ requires that the basis step be P(4). Note that P(4) is true, because $2^4 = 16 < 24 = 4!$

INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for an arbitrary integer k with $k \ge 4$. That is, we assume that $2^k < k!$ for the positive integer k with $k \ge 4$. We must show that under this hypothesis, P(k + 1) is also true. That is, we must show that if $2^k < k!$ for an arbitrary positive integer k where $k \ge 4$, then $2^{k+1} < (k + 1)!$. We have

 $2^{k+1} = 2 \cdot 2^k$ by definition of exponent $|H| < 2 \cdot k!$ by the inductive hypothesis < (k+1)k! because 2 < k+1= (k+1)! by definition of factorial function.

This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the proof.

We have completed the basis step and the inductive step. Hence, by mathematical induction P(n) is true for all integers n with $n \ge 4$. That is, we have proved that $2^n < n!$ is true for all integers n with $n \ge 4$.

Example

Use mathematical induction to prove that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for every nonnegative integer *n*.

Solution: To construct the proof, let P(n) denote the proposition: " $7^{n+2} + 8^{2n+1}$ is divisible by 57."

BASIS STEP: To complete the basis step, we must show that P(0) is true, because we want to prove that P(n) is true for every nonnegative integer *n*. We see that P(0) is true because $7^{0+2} + 8^{2 \cdot 0+1} = 7^2 + 8^1 = 57$ is divisible by 57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary nonnegative integer k; that is, we assume that $7^{k+2} + 8^{2k+1}$ is divisible by 57. To complete the inductive step, we must show that when we assume that the inductive hypothesis P(k) is true, then P(k + 1), the statement that $7^{(k+1)+2} + 8^{2(k+1)+1}$ is divisible by 57, is also true.

The difficult part of the proof is to see how to use the inductive hypothesis. To take advantage of the inductive hypothesis, we use these steps:

$$7^{(k+1)+2} + 8^{2(k+1)+1} = 7^{k+3} + 8^{2k+3}$$

= 7 \cdot 7^{k+2} + 8^2 \cdot 8^{2k+1}
= 7 \cdot 7^{k+2} + 64 \cdot 8^{2k+1}
= 7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1}

We can now use the inductive hypothesis, which states that $7^{k+2} + 8^{2k+1}$ is divisible by 57. We will use parts (i) and (ii) of Theorem 1 in Section 4.1. By part (ii) of this theorem, and the inductive hypothesis, we conclude that the first term in this last sum, $7(7^{k+2} + 8^{2k+1})$, is divisible by 57. By part (ii) of this theorem, the second term in this sum, $57 \cdot 8^{2k+1}$, is divisible by 57. Hence, by part (i) of this theorem, we conclude that $7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1} = 7^{k+3} + 8^{2k+3}$ is divisible by 57. This completes the inductive step.

Because we have completed both the basis step and the inductive step, by the principle of mathematical induction we know that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for every nonnegative integer *n*.

5.2.2 Strong Induction

Before we illustrate how to use strong induction, we state this principle again.

STRONG INDUCTION To prove that P(n) is true for all positive integers *n*, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $[P(1) \land P(2) \land \dots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Show that if *n* is an integer greater than 1, then *n* can be written as the product of primes.

Solution: Let P(n) be the proposition that *n* can be written as the product of primes.

BASIS STEP: P(2) is true, because 2 can be written as the product of one prime, itself. (Note that P(2) is the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j) is true for all integers *j* with $2 \le j \le k$, that is, the assumption that *j* can be written as the product of primes whenever *j* is a positive integer at least 2 and not exceeding *k*. To complete the inductive step, it must be shown that P(k + 1) is true under this assumption, that is, that k + 1 is the product of primes.

There are two cases to consider, namely, when k + 1 is prime and when k + 1 is composite. If k + 1 is prime, we immediately see that P(k + 1) is true. Otherwise, k + 1 is composite and can be written as the product of two positive integers a and b with $2 \le a \le b < k + 1$. Because both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to write both a and b as the product of primes. Thus, if k + 1 is composite, it can be written as the product of primes, namely, those primes in the factorization of a and those in the factorization of b.

Solving Linear Recurrence Relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Solving Linear Homogeneous Recurrence Relations

with Constant Coefficients

- We can use two key ideas to find all their solutions.
- First, these recurrence relations have solutions of the form a_n = rⁿ, where r is a constant.

 a_n = rⁿ is a solution of the recurrence relation a_n = c₁a_{n-1} + c₂a_{n-2} + ···+ c_ka_{n-k} if and only if

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \dots + c_{k}r^{n-k}.$$

When both sides of this equation are divided by r^{n-k} (when $r \neq 0$) and the right-hand side i subtracted from the left, we obtain the equation

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0.$$

Consequently, the sequence $\{a_n\}$ with $a_n = r^n$ where $r \neq 0$ is a solution if and only if r is solution of this last equation. We call this the **characteristic equation** of the recurrence relation

- The solutions of this equation are called the **characteristic roots** of the recurrence relation. A
- THE DEGREE TWO CASE :We now turn our attention to linear homogeneous recurrence relations of degree two.
- First, consider the case when there are two distinct characteristic roots.

Let c_1 and c_2 be real numbers. Suppose that $r^2 - c_1r - c_2 = 0$ has two distinct roots r and r_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1a_{n-1} + c_2a_{n-1}$ if and only if $a_n = \alpha_1r_1^n + \alpha_2r_2^n$ for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

EXAMPLE

What is the solution of the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$

with $a_0 = 2$ and $a_1 = 7$?

Solution: Theorem 1 can be used to solve this problem. The characteristic equation of the recurrence relation is $r^2 - r - 2 = 0$. Its roots are r = 2 and r = -1. Hence, the sequence $\{a_n\}$ is a solution to the recurrence relation if and only if

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n,$$

for some constants α_1 and α_2 . From the initial conditions, it follows that

$$a_0 = 2 = \alpha_1 + \alpha_2,$$

 $a_1 = 7 = \alpha_1 \cdot 2 + \alpha_2 \cdot (-1).$

Solving these two equations shows that $\alpha_1 = 3$ and $\alpha_2 = -1$. Hence, the solution to the recurrence relation and initial conditions is the sequence $\{a_n\}$ with

$$a_n = 3 \cdot 2^n - (-1)^n.$$

Theorem 2

Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1r - c_2 = 0$ has only one root r_0 . A sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1a_{n-1} + c_2a_{n-2}$ if and only if $a_n = \alpha_1r_0^n + \alpha_2nr_0^n$, for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

EXAMPLE

What is the solution of the recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with initial conditions $a_0 = 1$ and $a_1 = 6$?

Solution: The only root of $r^2 - 6r + 9 = 0$ is r = 3. Hence, the solution to this recurrence relation is

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n$$

for some constants α_1 and α_2 . Using the initial conditions, it follows that

$$a_0 = 1 = \alpha_1,$$

 $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3.$

Solving these two equations shows that $\alpha_1 = 1$ and $\alpha_2 = 1$. Consequently, the solution to this recurrence relation and the initial conditions is

$$a_n = 3^n + n3^n.$$

EXAMPLE

Find the solution to the recurrence relation

 $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$

with the initial conditions $a_0 = 2$, $a_1 = 5$, and $a_2 = 15$.

Solution: The characteristic polynomial of this recurrence relation is

 $r^3 - 6r^2 + 11r - 6.$

The characteristic roots are r = 1, r = 2, and r = 3, because $r^3 - 6r^2 + 11r - 6 = (r - 1)(r - 2)(r - 3)$. Hence, the solutions to this recurrence relation are of the form

$$a_n = \alpha_1 \cdot 1^n + \alpha_2 \cdot 2^n + \alpha_3 \cdot 3^n.$$

To find the constants α_1 , α_2 , and α_3 , use the initial conditions. This gives

 $a_0 = 2 = \alpha_1 + \alpha_2 + \alpha_3,$ $a_1 = 5 = \alpha_1 + \alpha_2 \cdot 2 + \alpha_3 \cdot 3,$ $a_2 = 15 = \alpha_1 + \alpha_2 \cdot 4 + \alpha_3 \cdot 9.$

When these three simultaneous equations are solved for α_1 , α_2 , and α_3 , we find that $\alpha_1 = 1$, $\alpha_2 = -1$, and $\alpha_3 = 2$. Hence, the unique solution to this recurrence relation and the given initial conditions is the sequence $\{a_n\}$ with

$$a_n = 1 - 2^n + 2 \cdot 3^n.$$

Linear Non homogeneous Recurrence Relations

with Constant Coefficients

The recurrence relation $a_n = 3a_{n-1} + 2n$ is an example of a **linear nonhomogeneous re**currence relation with constant coefficients, that is, a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

where c_1, c_2, \ldots, c_k are real numbers and F(n) is a function not identically zero depending only on *n*. The recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

is called the **associated homogeneous recurrence relation**. It plays an important role in the solution of the nonhomogeneous recurrence relation.

If $\{a_n^{(p)}\}\$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

then every solution is of the form $\{a_n^{(p)} + a_n^{(h)}\}\$, where $\{a_n^{(h)}\}\$ is a solution of the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}.$$

EXAMPLE

Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients, we need to solve its associated linear homogeneous equation and to find a particular solution for the given nonhomogeneous equation. The associated linear homogeneous equation is $a_n = 3a_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^n$, where α is a constant.

We now find a particular solution. Because F(n) = 2n is a polynomial in *n* of degree one, a reasonable trial solution is a linear function in *n*, say, $p_n = cn + d$, where *c* and *d* are constants. To determine whether there are any solutions of this form, suppose that $p_n = cn + d$ is such a solution. Then the equation $a_n = 3a_{n-1} + 2n$ becomes cn + d = 3(c(n-1) + d) + 2n. Simplifying and combining like terms gives (2 + 2c)n + (2d - 3c) = 0. It follows that cn + d is a solution if and only if 2 + 2c = 0 and 2d - 3c = 0. This shows that cn + d is a solution if and only if c = -1 and d = -3/2. Consequently, $a_n^{(p)} = -n - 3/2$ is a particular solution.

By Theorem 5 all solutions are of the form

$$a_n = a_n^{(p)} + a_n^{(h)} = -n - \frac{3}{2} + \alpha \cdot 3^n,$$

where α is a constant.

To find the solution with $a_1 = 3$, let n = 1 in the formula we obtained for the general so lution. We find that $3 = -1 - 3/2 + 3\alpha$, which implies that $\alpha = 11/6$. The solution we seek is $a_n = -n - 3/2 + (11/6)3^n$.

EXAMPLE

Find all solutions of the recurrence relation

$$a_n = 5a_{n-1} - 6a_{n-2} + 7^n.$$

Solution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated homogeneous recurrence relation

 $a_n = 5a_{n-1} - 6a_{n-2}$

are $a_n^{(h)} = \alpha_1 \cdot 3^n + \alpha_2 \cdot 2^n$, where α_1 and α_2 are constants. Because $F(n) = 7^n$, a reasonable trial solution is $a_n^{(p)} = C \cdot 7^n$, where *C* is a constant. Substituting the terms of this sequence into the recurrence relation implies that $C \cdot 7^n = 5C \cdot 7^{n-1} - 6C \cdot 7^{n-2} + 7^n$. Factoring out 7^{n-2} , this equation becomes 49C = 35C - 6C + 49, which implies that 20C = 49, or that C = 49/20. Hence, $a_n^{(p)} = (49/20)7^n$ is a particular solution. By Theorem 5, all solutions are of the form

 $a_n = \alpha_1 \cdot 3^n + \alpha_2 \cdot 2^n + (49/20)7^n.$

EXAMPLE

What form does a particular solution of the linear nonhomogeneous recurrence relation $a_n = 6a_{n-1} - 9a_{n-2} + F(n)$ have when $F(n) = 3^n$, $F(n) = n3^n$, $F(n) = n^22^n$, and $F(n) = (n^2 + 1)3^n$?

Solution: The associated linear homogeneous recurrence relation is $a_n = 6a_{n-1} - 9a_{n-2}$. Its characteristic equation, $r^2 - 6r + 9 = (r - 3)^2 = 0$, has a single root, 3, of multiplicity two. To apply Theorem 6, with F(n) of the form $P(n)s^n$, where P(n) is a polynomial and s is a constant, we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but s = 2 is not a root, Theorem 6 tells us that a particular solution has the form $p_0 n^2 3^n$ if $F(n) = 3^n$, the form $n^2(p_1 n + p_0)3^n$ if F(n) =

 $n3^n$, the form $(p_2n^2 + p_1n + p_0)2^n$ if $F(n) = n^22^n$, and the form $n^2(p_2n^2 + p_1n + p_0)3^n$ if $F(n) = (n^2 + 1)3^n$.

EXAMPLE

Let a_n be the sum of the first *n* positive integers, so that

$$a_n = \sum_{k=1}^n k.$$

Note that a_n satisfies the linear nonhomogeneous recurrence relation

$$a_n = a_{n-1} + n.$$

(To obtain a_n , the sum of the first *n* positive integers, from a_{n-1} , the sum of the first n - 1 positive integers, we add *n*.) Note that the initial condition is $a_1 = 1$.

The associated linear homogeneous recurrence relation for a_n is

$$a_n = a_{n-1}.$$

The solutions of this homogeneous recurrence relation are given by $a_n^{(h)} = c(1)^n = c$, where *c* is a constant. To find all solutions of $a_n = a_{n-1} + n$, we need find only a single particular solution. By Theorem 6, because $F(n) = n = n \cdot (1)^n$ and s = 1 is a root of degree one of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form $n(p_1n + p_0) = p_1n^2 + p_0n$.

Inserting this into the recurrence relation gives $p_1n^2 + p_0n = p_1(n-1)^2 + p_0(n-1) + n$. Simplifying, we see that $n(2p_1 - 1) + (p_0 - p_1) = 0$, which means that $2p_1 - 1 = 0$ and $p_0 - p_1 = 0$, so $p_0 = p_1 = 1/2$. Hence,

$$a_n^{(p)} = \frac{n^2}{2} + \frac{n}{2} = \frac{n(n+1)}{2}$$

is a particular solution. Hence, all solutions of the original recurrence relation $a_n = a_{n-1} + n$ are given by $a_n = a_n^{(h)} + a_n^{(p)} = c + n(n+1)/2$. Because $a_1 = 1$, we have $1 = a_1 = c + 1 \cdot 2/2 = c + 1$, so c = 0. It follows that $a_n = n(n+1)/2$. (This is the same formula given in Table 2 in Section 2.4 and derived previously.)

Generating Functions

The generating function for the sequence $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

EXAMPLE 2 What is the generating function for the sequence 1, 1, 1, 1, 1, 1?

Solution: The generating function of 1, 1, 1, 1, 1, 1 is

 $1 + x + x^2 + x^3 + x^4 + x^5$.

By Theorem 1 of Section 2.4 we have

$$(x^{6}-1)/(x-1) = 1 + x + x^{2} + x^{3} + x^{4} + x^{5}$$

when $x \neq 1$. Consequently, $G(x) = (x^6 - 1)/(x - 1)$ is the generating function of the sequence 1, 1, 1, 1, 1, 1. [Because the powers of x are only place holders for the terms of the sequence in a generating function, we do not need to worry that G(1) is undefined.]

EXAMPLE 3 Let *m* be a positive integer. Let $a_k = C(m, k)$, for k = 0, 1, 2, ..., m. What is the generating function for the sequence $a_0, a_1, ..., a_m$?

Solution: The generating function for this sequence is

 $G(x) = C(m, 0) + C(m, 1)x + C(m, 2)x^{2} + \dots + C(m, m)x^{m}.$

The binomial theorem shows that $G(x) = (1 + x)^m$.

<

Using Generating Functions to Solve

Recurrence Relations

Solve the recurrence relation $a_k = 3a_{k-1}$ for k = 1, 2, 3, ... and initial condition $a_0 = 2$.

Solution: Let G(x) be the generating function for the sequence $\{a_k\}$, that is, $G(x) = \sum_{k=0}^{\infty} a_k x^k$. First note that

$$xG(x) = \sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{k=1}^{\infty} a_{k-1} x^k.$$

Using the recurrence relation, we see that

$$G(x) - 3xG(x) = \sum_{k=0}^{\infty} a_k x^k - 3 \sum_{k=1}^{\infty} a_{k-1} x^k$$
$$= a_0 + \sum_{k=1}^{\infty} (a_k - 3a_{k-1}) x^k$$
$$= 2,$$

because $a_0 = 2$ and $a_k = 3a_{k-1}$. Thus,

$$G(x) - 3xG(x) = (1 - 3x)G(x) = 2.$$

Solving for G(x) shows that G(x) = 2/(1 - 3x). Using the identity $1/(1 - ax) = \sum_{k=0}^{\infty} a^k x^k$, from Table 1, we have

$$G(x) = 2\sum_{k=0}^{\infty} 3^{k} x^{k} = \sum_{k=0}^{\infty} 2 \cdot 3^{k} x^{k}.$$

Consequently, $a_k = 2 \cdot 3^k$.

	_	
_		