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Worked Example.3.1

Example 3.1.1 ]
Show that if n is a positive integer, then 1 +2 + oo = DD
Solution:

letP(n): 1 + 2 + «=*n
we must show that

1) Basis Step: P(1) is true- .
2) Inductive Step: If P(k) is true then P(k + 1) is true where k is

a positive integer.
P(1) = ”5"” 1 which is true.

+--+ k= k(k+1) is true.

-_ ni{n+1)
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we assume that P(k):1 +2
it must be shown that P(k + 1) i

(k+1)(k+2)

s true.

Under this assumption,
(1) (k+141) _

N]liIEt e LT rr D) =2+ E 4D
-+ 2
i e : k{k+1)+2(k+1)

m+nm+m

PR

that P(k) is true.
r thﬂ assumptlﬂlﬂ - n(nt+1)




Prove that 3 divides n® + 2n whenever n is a nonnegative integer.
Solution

Let P(n) be the proposition that n® + 2 n is divisible by 3.
Basis Step: P(1): 1 + 2 = 3 is divisible by 3. '
Inductive Step: we assume that P(k): k3 + 2k is divisible by 3.

Ptk + 1) =(k+1)°+2(k+1) = (k®+3k? + 3k + 1) + 2(k + 1)

= (k? + 2k) + 3(k? + k + 1)) divisible by 3."
Hence proved.

ﬂ;mn;athematical induction to prove that n® —n is divisible by 3,
whenever n is a positive integer.
Solution

Let P(n) be the proposition that n® —nis dmslble by 3.

Basis Step: P(1): 13 —1=0=0X 3 is dms:tble by 3.

(k): k3 —k s divisible b}' 3.

Inductive Step: we assume that P i3 +3k2+3k+1) - (k+1)

i 1) P l)a(ka(k +)14]- 3(::2 +k)) whichis divisible by 3.
true when P(k) is true. This mmpletca the

This shows that P(k + 1) is
inductive step of the proof-

Example



Use mathematical induction to show that
1+2+22 4+ 2" =21
for all nonnegative integers n.

Solution: Let P(n) be the proposition that 1 +2 + 2% + --- + 2" = 2+ | for the integer n.
BASIS STEP: P(0) is true because 2° = 1 = 2! — 1. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary
nonnegative integer k. That is, we assume that

{ 2500 e = 2 ],

To carry out the inductive step using this assumption, we must show that when we assume
that P(k) is true, then P(k + 1) is also true. That is, we must show that

1424274 204201 =20 DM =02

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that
1 4+24+22 4+ o 428428 = (1 42 422 4 -0 4 2F) 4 2K

g (2k+l - 1) 4 2k+1

=2.2k1_1

=22 1.
Note that we used the inductive hypothesis in the second equation in this string of equalities to
replace 1 + 2 + 2% + --- + 2k by 2*! — 1. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction
we know that P(n) is true for all nonnegative integers n. Thatis, 1 +2 + --- + 2" = 2"+ — ] for
all nonnegative integers n. <

Example



Use mathematical induction to prove the inequality
<2

for all positive integers n.

Solution: Let P(n) be the proposition that n < 2".

BASIS STEP: P(1) is true, because 1 < 2! = 2. This completes the basis step.

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k) is true for an arbitrary
positive integer k. That is, the inductive hypothesis P(k) is the statement that k < 2%, To complete
the inductive step, we need to show that if P(k) is true, then P(k + 1), which is the statement
that k + 1 < 2¥*! is true. That is, we need to show that if k < 2%, then k + 1 < 2**!. To show
that this conditional statement is true for the positive integer k, we first add 1 to both sides of
k < 2k and then note that 1 < 2%_ This tells us that

IH

k+1<2¥+1 <2842k =2.2k =2k
This shows that P(k + 1) is true, namely, that k + 1 < 2%+1 based on the assumption that P(k)
is true. The induction step is complete.

Therefore, because we have completed both the basis step and the inductive step, by
the principle of mathematical induction we have shown that n < 2" is true for all positive
integers n. <

Example



Use mathematical induction to prove that 2" < n! for every integer n with n > 4. (Note that this
inequality is false forn = 1, 2, and 3.)

Solution: Let P(n) be the proposition that 2" < n!.

BASIS STEP: To prove the inequality for n > 4 requires that the basis step be P(4). Note that
P(4) is true, because 2* = 16 < 24 = 4!

INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for an arbitrary integer k
with k > 4. That is, we assume that 2* < k! for the positive integer k with k > 4. We must show
that under this hypothesis, P(k + 1) is also true. That 1s, we must show that if 2k < k! for an
arbitrary positive integer k where k > 4, then 28! < (k + 1)!. We have

2k+l — 2 . 2k by definition of exponent

IH
<2-k! by the inductive hypothesis
< (k+ 1)k! because2 <k+1

=(k+ 1) by definition of factorial function.

This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the
proof.

We have completed the basis step and the inductive step. Hence, by mathematical induction
P(n) is true for all integers n with n > 4. That is, we have proved that 2" < n! is true for all
integers n with n > 4. 3

Example

Use mathematical induction to prove that 7*? + 8>"*! is divisible by 57 for every nonnegative
integer n.

Solution: To construct the proof, let P(n) denote the proposition: <772 4 82**+! is divisible
by 57.”

BASIS STEP: To complete the basis step, we must show that P(0) is true, because we want
to prove that P(n) is true for every nonnegative integer n. We see that P(0) is true because
70+2 4 820+1 = 72 4 8! = 57 is divisible by 57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary
nonnegative integer k; that is, we assume that 7%+ + 82**1 is divisible by 57. To complete the
inductive step, we must show that when we assume that the inductive hypothesis P(k) is true,
then P(k + 1), the statement that 7%+D+2 4 82(+D+1 i< divisible by 57, is also true.



The difficult part of the proof is to see how to use the inductive hypothesis. To take advan-
tage of the inductive hypothesis, we use these steps:

FhH1D+2 o @AUk+D+] — Jht3 4 g2k+3
= 7. Tk+2 4 g2, g2+l
= 7.7K2 1 64 . g2+
= 7(T&+2 4 g2y 4 57 . g2+

We can now use the inductive hypothesis, which states that 7%+2 + 8%+1 is divisible by 57.
We will use parts (1) and (i1) of Theorem 1 in Section 4.1. By part (i1) of this theorem, and the
inductive hypothesis, we conclude that the first term in this last sum, 7(7+2 + 8%*+1)_is divisible
by 57. By part (ii) of this theorem, the second term in this sum, 57 - 8%**!_ is divisible by 57.
Hence, by part (i) of this theorem, we conclude that 7(75+2 + 82+1) 4 57 . §2k+1 = k43 4 g2k+3
is divisible by 57. This completes the inductive step.

Because we have completed both the basis step and the inductive step, by the principle
of mathematical induction we know that 7**% + 8%*! ig divisible by 57 for every nonnegative
integer n. 4

5.2.2 Strong Induction

Before we illustrate how to use strong induction, we state this principle again.

STRONG INDUCTION To prove that P(n) is true for all positive integers n, where P(n) is a
propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement [P(1) A P(2) A -+ A P(k)] —
P(k + 1) is true for all positive integers k.



Show that if # is an integer greater than 1, then n can be written as the product of primes.

Solution: Let P(n) be the proposition that n can be written as the product of primes.

BASIS STEP: P(2) is true, because 2 can be written as the product of one prime, itself. (Note
that P(2) 1s the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j) is true for all
integers j with 2 < j <k, that is, the assumption that j can be written as the product of primes
whenever j is a positive integer at least 2 and not exceeding k. To complete the inductive step,
it must be shown that P(k + 1) is true under this assumption, that is, that £ + 1 is the product
of primes.

There are two cases to consider, namely, when k + 1 i1s prime and when k + 1 is composite.
If k + 1 is prime, we immediately see that P(k + 1) is true. Otherwise, k + 1 is composite and
can be written as the product of two positive integers a and b with2 < a £ b < k+ 1. Because
both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to
write both a and b as the product of primes. Thus, if k + 1 is composite, it can be written as the
product of primes, namely, those primes in the factorization of a and those in the factorization
of b, 2|

Solving Linear Recurrence Relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recur-
rence relation of the form

a, =c 4, +ca, o+ -+ ca, .

where ¢, ¢,, ..., ¢; are real numbers, and ¢; # 0.

Solving Linear Homogeneous Recurrence Relations

with Constant Coefficients

« We can use two key ideas to find all their solutions.

. First, these recurrence relations have solutions of the form a, =,
where r is a constant.



a, = rris a solution of the recurrence relationa,=ca, +ca,, + -+
ca..ifand only if

= o e e

When both sides of this equation are divided by 7"~ (when r # 0) and the right-hand side i
subtracted from the left, we obtain the equation

o Cl}’k_l - czrk'z — e — g F—p =0,

Consequently, the sequence {a,} with a, = " where r # 0 is a solution if and only if r is

solution of this last equation. We call this the characteristic equation of the recurrence relatior

The solutions of this equation are called the characteristic roots of the recurrence relation. A
THE DEGREE TWO CASE :We now turn our attention to linear homogeneous

recurrence relations of degree two.

First, consider the case when there are two distinct characteristic roots.

Let ¢, and ¢, be real numbers. Suppose that r> —c;r — ¢, = 0 has two distinct roots 7

and r,. Then the sequence {a, } is a solution of the recurrence relation a, = ca,_, + c,a,_
ifand only ifa, = ayr] + ayr) forn =0, 1,2, ..., where @, and a, are constants.
EXAMPLE

What is the solution of the recurrence relation

an = a’n—l g 2“’;1—2

Wlth dg = 2 al’ld a) = 7r}

Solution: Theorem 1 can be used to solve this problem. The characteristic equation of the re-
currence relation is r> — r — 2 = 0. Its roots are » = 2 and r = —1. Hence, the sequence {a, } is
a solution to the recurrence relation if and only if

a, = a;2" + ay(—1)",



for some constants a; and @,. From the initial conditions, it follows that

ag =2 =ay +a,
al =7=(Il'2+£12°(—1).

Solving these two equations shows that a; = 3 and a, = —1. Hence, the solution to the recur-
rence relation and initial conditions is the sequence {a,, } with

a, :3_2n_(_l)n. =]

Theorem 2

Let ¢, and ¢, be real numbers with ¢, # 0. Suppose that r* — ¢, — ¢, = 0 has only one root
ro. A sequence {a,} 1s a solution of the recurrence relation a,, = c¢,a,_, + c,a,_, if and only
if a, = ayry + aynrg, forn =0, 1,2, ..., where a; and a, are constants.

EXAMPLE
What 1s the solution of the recurrence relation
a,=6a, ,—9a,_,

n

with 1nitial conditions a;, = 1 and a; = 67



Solution: The only root of ¥ — 6r +9 = 0 is = 3. Hence, the solution to this recurrence rela-
tion is

- n n
a, = a;3" + a,n3

for some constants «; and a,. Using the initial conditions, it follows that

a0=1=a‘1,
a=6=a,:3+a,-3.

Solving these two equations shows that a; = 1 and @, = 1. Consequently, the solution to this
recurrence relation and the initial conditions is

a,=3"+n3".

EXAMPLE

Find the solution to the recurrence relation

a,=6a,_,—1la. ,4+6a, ,

with the initial conditions a, = 2, a; = 5, and a, = 15.

Solution: The characteristic polynomial of this recurrence relation is
r—6r'+11r—6.

The characteristic roots are r=1, r=2, and r=3, because r —6r2+1lr—6=
(r— 1)(r = 2)(r — 3). Hence, the solutions to this recurrence relation are of the form

a,=a;-1"+a, 2" +a;-3".



To find the constants a,, a,, and a5, use the 1nitial conditions. This gives

ay =2=a; +a, + as,
a=5=a,+a,-2+a3-3
a2:15:al+a2'4+a3'9.

When these three simultaneous equations are solved for a;, a5, and a3, we find that a; =1,
o, = —1, and @3 = 2. Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {a,} with

a,=1-=-2"+2.3" <

n

Linear Non homogeneous Recurrence Relations
with Constant Coefficients

The recurrence relation a, = 3a,_; + 2n is an example of a linear nonhomogeneous re-
currence relation with constant coefficients, that is, a recurrence relation of the form

a, =cya, 1 +ca, ,+ - +ca, ,+F@n),

where ¢y, ¢,, ..., ¢, are real numbers and F(n) 1s a function not identically zero depending only
on n. The recurrence relation

, = C18p_1 +Caly_o + *+ + 1, ;.

is called the associated homogeneous recurrence relation. It plays an important role in the
solution of the nonhomogeneous recurrence relation.

If {a,(,‘") } is a particular solution of the nonhomogeneous linear recurrence relation with con-
stant coefficients

ap = C1dy_| T+ Cr0y 5 + -+ 4y + F(n):

then every solution is of the form {a” + a®™}, where {a"} is a solution of the associated
homogeneous recurrence relation

a, = C1a, + G d, - + e Crly -



EXAMPLE

Find all solutions of the recurrence relation a,, = 3a,_; + 2n. What is the solution with a; = 3?

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients,
we need to solve its associated linear homogeneous equation and to find a particular solution
for the given nonhomogeneous equation. The associated linear homogeneous equation is a, =
3a,,_,. Its solutions are aff” = 3", where « 1s a constant.

We now find a particular solution. Because F(n) = 2n is a polynomial in n of degree one, a
reasonable trial solution is a linear function in n, say, p, = cn + d, where ¢ and d are constants.
To determine whether there are any solutions of this form, suppose that p, = cn +d is such
a solution. Then the equation a, = 3a,_; + 2n becomes cn +d = 3(c(n — 1) + d) + 2n. Sim-
plifying and combining like terms gives (2 + 2¢)n + (2d — 3¢) = 0. It follows that cn + d 1s a
solution if and only if 2 4+ 2¢ = 0 and 2d — 3¢ = 0. This shows that cn + d is a solution if and

only if ¢ = —1 and d = —3 /2. Consequently, aff’) = —n — 3/2 is a particular solution.
By Theorem 35 all solutions are of the form

a =af§")+a:j’)=—n——+a-3”,

i 2

where a 1s a constant.

To find the solution with @, = 3, let n = 1 in the formula we obtained for the general so
lution. We find that 3 = —1 — 3/2 + 3a, which implies that « = 11 /6. The solution we seek i:
a,=-n—3/24+(11/6)3". <

EXAMPLE



Find all solutions of the recurrence relation

a,=5a, ,—6a, ,+ 7"

n

Solution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated
homogeneous recurrence relation

a, = 5“:1—1 = 66'"_2

are aff” = a, - 3" + a, - 2", where a, and a, are constants. Because F(n) = 7", a reasonable trial

solution is a”’ = C- 7", where C is a constant. Substituting the terms of this sequence into
the recurrence relation implies that C - 7" = 5C - 7! — 6C - 7"~2 + 7". Factoring out 7", this
equation becomes 49C = 35C — 6C + 49, which implies that 20C = 49, or that C = 49/20.

Hence, an(’” = (49/20)7" is a particular solution. By Theorem 3, all solutions are of the form

a,=a, -3"+a, 2"+ (49/20)7". “

EXAMPLE

What form does a particular solution of the linear nonhomogeneous recurrence rela-
tion a, = 6a,_; —9a,_, + F(n) have when F(n) = 3", F(n) = n3", F(n) = n*2", and F(n) =
(n* + 1)3"?

Solution: The associated linear homogeneous recurrence relation is a, = 6a,_; — 9a,_,. Its
characteristic equation, r* — 6r + 9 = (r — 3)> = 0, has a single root, 3, of multiplicity two. To
apply Theorem 6, with F(n) of the form P(n)s", where P(n) is a polynomial and s is a constant,
we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but s = 2 is not a root, Theorem 6 tells us
that a particular solution has the form pyn®3" if F(n) = 3", the form n*(p;n + py)3" if F(n) =

n3", the form (p,n” + p,n + p,)2" if F(n) = n?2", and the form n>(p,n* + p,n + p,)3" if F(n) =
(n® + 1)3". <

EXAMPLE



Let a,, be the sum of the first n positive integers, so that

n
a, = Z k.
k=1

Note that a,, satisfies the linear nonhomogeneous recurrence relation
a, =a,_, +n.

(To obtain a,,, the sum of the first n positive integers, from a,_,, the sum of the first n — | positive
integers, we add n.) Note that the initial condition is a; = 1.
The associated linear homogeneous recurrence relation for a,, is

The solutions of this homogeneous recurrence relation are given by af’ =1 =,
where ¢ is a constant. To find all solutions of a, = a,_; + n, we need find only a single par-
ticular solution. By Theorem 6, because F(n) =n =n-(1)" and s = 1 is a root of degree one of
the characteristic equation of the associated linear homogeneous recurrence relation, there is a
particular solution of the form n(p,n + p,) = p,n* + pyn.

Inserting this into the recurrence relation gives p;n* + pon = py(n — 1)> + po(n — 1) + n.
Simplifying, we see that n(2Zp; — 1) + (p; — p;) = 0, which means that 2p; — 1 =0 and p, —
py =0, 50 py = p, = 1/2. Hence,

a@}_ﬁ_'_g_n(n—l-l]
" 2 2 2

is a particular solution. Hence, all solutions of the original recurrence relation a, = a,_ |, +n
are given by a, = a + a?” =c+n(n+1)/2.Becausea, = l,wehave l =a, =c+1-2/2 =
c+ 1, s0 ¢ = 0. It follows that a, = n(n + 1)/2. (This is the same formula given in Table 2 in
Section 2.4 and derived previously.) <

Generating Functions




The generating function for the sequence ay, a, ..., a;, ... of real numbers is the infinite
series

Gx) = ay+ax+ - +a ) + - = Z ax*,
k=0

EXAMPLE 2 What is the generating function for the sequence 1, 1, 1, 1, 1, 1?7
Solution: The generating functionof 1, 1, 1, 1, 1, 1 is
l+x+x7+x +x° 4+,
By Theorem | of Section 2.4 we have
C=-D/x-D=1+x+2+2 +x'+x
when x# 1. Consequently, G(x)=(x%—1)/(x—1) is the generating function of the

sequence 1, 1, 1, 1, 1, 1. [Because the powers of x are only place holders for the terms of the
sequence in a generating function, we do not need to worry that G(1) is undefined.] 4

EXAMPLE 3 Letm be a positive integer. Let a, = C(m, k), fork =0, 1,2, ..., m. What is the generating func-
tion for the sequence ay, ay, ..., a,,”?

Solution: The generating function for this sequence is
G(x) = C(m, 0) + C(m, )x + C(m, 2)x> + --- + C(m, m)x™.

The binomial theorem shows that G(x) = (1 + x)™. |

Using Generating Functions to Solve

Recurrence Relations

Example



Solve the recurrence relation g, = 3a,_, fork = 1,2, 3, ... and initial condition a; = 2.

Solution: Let G(x) be the generating function for the sequence {a, }, that is, G(x) = E;ia a,;_x'('.
First note that

@0

xG(x) = iakfﬂ = Z ak_lxk.
k=0

k=1

Using the recurrence relation, we see that

oo

G(x) = 3xG(x) = Z akf‘ -3 Z a,\._]xk

k=0 k=1

oo

k=1
=9
because a, = 2 and a; = 3a;_,. Thus,

G(x) — 3xG(x) = (1 = 3x)G(x) = 2.

Solving for G(x) shows that G(x) = 2/(1 — 3x). Using the identity 1/(1 —ax) =Y~  a*x*,
from Table 1, we have

(5 a] [.a]
Gx) =2 Z 3kxk = Z 2. 3k,
k=0 k=0

Consequently, @, = 2 - 3%, 4




