Chapter 3

Quantum Mechanics

Up to nineteenth century, classical mechanics proposed by Newton was
enough to explain all types of motion. But to understand and deal the laws
of particles or bodies on the atomic and subatomic scale, a new branch was
introduced called quantum mechanics.

Classical Mechanics failed to explain photoelectric effect, atomic struc-
ture, optical spectra, black body radiation. But after the introduction of
Planck’s quantum theory, all these are successfully explained.

3.1 Quantum Theory

In 1900, Max Planck put forward a revolutionary theory called quantum
theory. In that the molecules in a source emit energy not continuously but
in small discrete packets called quanta.
Magnitude of energy of each packet is given by £ = hr where h is the
Planck’s constant. The value of h = 6.626 x 10734Js

In 1905, Einstein used this theory to explain photoelectric effect. In
1913, Bohr made use of Planck’s hypothesis to explain stability of atom.

3.2 De-Broglie Hypothesis
According to De-Broglie, any moving particle is associated with a wave.

This wave associated with the moving particles are known as de-Broglie
waves or matter waves.
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De-Broglie wavelength is given by

where m is the mass of the particle and p is its momentum.

* If KE of moving particle is given by

That is

p=V2mE

Then De Broglie wavelength

N (3.1)
p 2mE

* If an electron is accelerated by a potential V, then E = eV
Thus De-Broglie wavelength

Ao (3.2)
2meV

Putting the values of h = 6.626 x 1073%Js, mass of electron

m=9.1x 10_31kg, charge of electron e = 1.6 X 10719 ¢
We have 19.3
A= —"—_A° (3.3)
VV

150
A=/ —A° 3.4
Vv (3.4)

3.3 Concept of Uncertainty and Conjugate Observ-
ables
Uncertainty principle is a fundamental concept in quantum mechanics

which states that it is impossible to simultaneously know with absolute pre-
cision the values of certain pairs of physical properties of a particle. This



Heisenberg’s Uncertainty Principle 47

means that the more accurately you measure one property, the less accu-
rately you can measure the other.

Conjugate observables are pairs of physical properties that are linked
by the uncertainty principle. Measuring one with high precision inherently
limits the precision with which the other can be measured.

Common examples of conjugate observables include:

Position and momentum: The more precisely you know the position of
a particle, the less precisely you can know its momentum, and vice versa.

Energy and time: The more precisely you know the energy of a system,
the less precisely you can know the time at which it has that energy.

Angular momentum and angle: There’s a similar uncertainty relation
between angle and angular momemtum.

3.4 Heisenberg’s Uncertainty Principle

1. Uncertainty in Position and Momentum: According to Heisen-
berg’s Uncertainty principle, it is impossible to measure both the po-
sition and momentum of an object precisely at same time.

It states that the product of the uncertainties in the position (éx) and
momentum (dp) of a particle is greater than or equal to a constant
value Planck’s constant divided by 4.

h
Top >
d0xép > pm

2. Uncertainty in Energy and Time: This principle relates the uncer-
tainty in energy (0F) of a system to the uncertainty in the time (dt)
over which it is measured.

h
0Bt > —
T A
This implies that systems with very short lifetimes have inherently
uncertain energies, and vice versa.

3. Uncertainty in Angular Momentum and Angle: Similar to the
position-momentum relationship, there’s an uncertainty relation be-
tween angular momentum (J) and angle ().
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This means that the more precisely you know the angular momentum
of a system, the less precisely you can know its angular position.

h
0Jo0 > —
d Yy

3.4.1 Applications of Heisenberg’s Uncertainty Principle

Some atomic phenomena can be explained using uncertainty principle.

Absence of Electron Inside the Nucleus

The diameter of the nucleus is in the order of 10~'®m. If an electron exists
in the nucleus, it can be anywhere within the diameter of the nucleus. Then
the uncertainty in position, 6z = 10~ °m.

By Uncertainty Principle,

h
dxdp > —
Tp_47r

h 6.626 x 1034

= = =5.27 x 10 2kgm /<
Iror ~ Ax31dx10-5 21X 10 Tkgm/s

op

The momentum of the electron p is of the order of 5.27 x 10~2°kgm/s
We have

E=pc=527x10"2 x 3 x10% = 15.81 x 107 2J

15.81 x 10712

For an electron to exist in the nucleus, it must have an energy of this order.
However, the energy of electron is of order of few MeV. So electrons do not
exist within the nucleus.

Natural Line Broadening

Natural line broadening is an intrinsic property of spectral lines that arises
from the finite lifetime of excited atomic or molecular states. It’s a quantum
mechanical effect rooted in the Heisenberg uncertainty principle.

If an atom is in the excited state, it undergoes a transition to the lower
energy state. Such an atom remains in the excited state for about 10~3
second. i.e., 0t = 10785
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We have

>
5E5t_4

™

Since £ = hv, we have

h 1
Wy = ——i.e., ov=——=0(. 7 = .
hév 47T5t7€, v 1< 108 0.7x10'Hz=7"MH=z

Here there is an uncertainty in frequency of light emitted by an atom
and is of the order of MHz. So this width dv of the emitted line is experi-
mentally observed.

Spectral Line: A spectral line represents the energy difference between
two quantum states. Due to the energy uncertainty of the excited state, the
emitted photon’s energy (and consequently, its frequency or wavelength)
will have a spread, resulting in a broadened spectral line.That means the
emitted spectral line have a finite width. This broadening of spectral line
which cannot be reduced further is known as natural line broadening.

3.5 Wave Function

In quantum mechanics, a wave function (¢) is a mathematical description
of the quantum state of a particle. It is a function of position coordinates and
time. Wave function (¢)) is a complex quantity. Wave function describes
the behavior of a single particle.

3.5.1 Physical Significance of Wave Function

1. Probability density: The wave function %) itself has no physical
meaning, but the square of absolute magnitude |¢)|? gives the prob-
ability of finding the particle in unit volume (probability density),
where ¢* is the complex conjugate of ).

i.e., Px) = g = o]
1, as such, is not an observable (physically measurable quantity).
But |¢|? is an observable. This is the statistical interpretation of 1.

2. Normalization: A wave function that satisfies the condition

/ YU drdydz =1

J =00
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is called normalized wave function. This condition means that the
probability to find the particle somewhere in the whole region where
the particle trapped is unity.

The solution of Schrodinger equation need not satisfy this above con-
dition directly. But we can normalize it by multiplying the function
by a suitable constant called normalization constant.

A normalized wave function has a clear physical interpretation. It
represents a particle that definitely exists somewhere in space.

3.5.2 Properties of Wave Function

Essential requisites for a well behaved wave function (constraints on wave
function) for a given system are

* Wave function ¢ should be single valued.

* Wave function ¢ should be finite.

* Wave function ¢ and its first space derivatives g—i’ , %—\5, %—\f must be

continuous across any boundary.

* Wave function 1) must be a normalized function.

3.6 Schrodinger Wave Equation

Schrodinger wave equations are the equation of motion which governs the
propagation of matter waves. This equation defines the wave properties of
particles and also predicts their particle- like behaviour.

3.6.1 Time Dependent Schrodinger Wave Equation

Consider a particle moving forward along the x-direction with momen-
tum P. The differential equation of the wave associated with the particle is
given as

vy 1 9%
o2~ 2 " o

The wave function of the particle is

(3.5)

U,y = Ae'ke=et) (3.6)
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Since we have
B 2rhvy F

h h

w =27V

2 2 p  p

A h h
Substituting for w and k in equation (3.6), we get

h
Also, A= — 1i.e.,
p

Uy = Aeh (P2 F) 3.7)

Total energy of a particle is the sum of kinetic energy and potential energy.
ie, E=imv?+V
2

E=L 4v

2m
Multiplying both sides by ¥, we get

P2
EV=_—9v+VV¥ (3.8)
2m
Differentiating equation (3.7) w.r.t x, we have
ov i 1
27— Aer(pz—Et) o _
Ox ¢ 8 r?

Again differentiating equation (3.7) w.r.t x, we have

0% i i?
s :Aeh(pa: Et) « EPQ
0?2,
oz P~ v
9>
ie, p’U = —ﬁQW (3.9)
Differentiating equation (3.7) w.r.t time,
ov i ) )
27— Aerlpz=Et) T Z _ "y
ar hoh
v
ie., EU = zha— (3.10)
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Substituting, p>¥ and E'¥ in equation (3.8),

L O0¥ h? 0?0
We get Zﬁﬁ ——%W—l—V\P (3.11)

This is Schrodinger’s time dependent equation in one dimension

In three dimensions,

ov h? _, 9 PO\ S 2\ S 23
ih T 2mV + VU where V 952 + 02 + 9.2

Also, z'fiaa—t = HV where H is Hamiltonian operator.

The value of

. K2
H=——V*4+V
2m

For free particle, PE = V =0, then

) R -

3.6.2 Time Independent Schrodinger Wave Equation

In some cases, potential energy V of a particle does not depend on time,
it varies with the position of the particle only and then the field is said
to be stationary. In such stationary problems, Schrodinger equation can
be simplified by separating out time- dependent and position — dependent
parts.

Accordingly, we write the wave function as a product of a function of
position z(t),) and a function of time ¢(¢)

Thus W0 = ¥ 1 (3.13)

Differentiating equation (3.13) w.r.t x twice,

0?v 0?1



Schrodinger Wave Equation 53

Differentiating (3.13) w.r.t ¢ once, we get

8\11
= % ¢ (3.15)
We have time dependent Schrodinger equation as
ov h? 0*V
i — 1\ 3.16
ot T " 2m ox? v (3.16)

Substituting equation (3.14) and equation (3.15) in equation (3.16),

8¢ h 8%

ﬁ% ¢t + V@Z]m ¢t

Dividing throughout by ¥, ¢:, We get,
10¢ _ 1 0%

The LHS is a function of ¢ alone while the RHS is a function of x alone.
For the equation to be consistent, each side must be equal to same constant
K. Then

1 0¢

99 _ K
ﬁ¢t ot

oo _3
? = ﬁKat (3.17)

Integrating equation (3.17), we get
B(t) = e ikt (3.18)
Substituting equation (3.18) in equation (3.13), we get
Uiy = thpe 7K (3.19)

Again on differentiating equation (3.19) with respect to z, we get,

oU i
= KU
ot h
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L Ov
KU = ifig (3.20)

Here we can see that K is identical with F, the total energy. Hence

EV = KU (3.21)

Then we can write the Schrodinger’s time dependent equation as

n? 0%
——— + VU =FEV¥
2m Ox? +
h? 0%v
T LBV =
2m Ox? + V) 0
Rearranging,
0*U  2m
— + = (E-V)U = 3.22
92 T2 ( ) 0 (3.22)

This is Schrodinger’s time-independent equation in one dimension or also
called as steady state form of Schrodinger equation.
For free particle, potential energy, V = 0, then one dimensional time-
independent Schrodinger equation becomes
0V 2m

o2 T B =0

In 3D form, V?¥ + 28:(E — V)¥ =0

3.7 Particle in 1-Dimensional box

Consider the motion of a particle of mass m confined to move between two
walls of infinite height at x = 0 and x = L. The width of the box is L.
Let this is moving along x - direction. It can move freely within the region
0 < « < L, but can never cross to the right of the region « > L or to the
left of the region < 0. It means V = 0 in the region 0 < =z < L and
rises to infinity at V = oo at x = 0 and z = L. This situation is called 1D
potential box.

For a particle trapped in one dimensional box, V = 0.
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Figure 3.1: A particle in a 1D infinite potential well of dimension L.

For a particle trapped in one dimensional box, the 1-D Schrodinger
equation is given as

P 2m
5o+ h—TgE\II —0 (3.23)
2
Let ﬁ—?E — 32 (3.24)

Putting equation (3.24) in equation(3.23), we get

2
T
Z? + kK20 =0 (3.25)

The general solution of the equation (3.25) is
¥ = Asin(kx) + B cos(kx) (3.26)

Now we apply the continuity condition on W. Since it is impossible to find
the particle outside the box, ¥ must be zero for all points outside the box.

=0 for <0 and ¥ =0 for > L (3.27)
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Applying first condition at z = 0 on equation (3.26),
0= Asin0+ Bcos0
Then B = 0. Then equation (3.26) becomes
U = Asin (k)
Using the condition at z = L on equation (3.26), we get

0= AsinkL

Since A # 0, sin kL must be equal to 0. Hence sin kL = 0

That is, kL. = nm where n is the integer or

nmw
k=—
L

Putting equation (3.30) in equation (3.28) we get

¥, = Asin (%>$

To find A, apply the normalization condition,

L
/ |W2de =1
0

L
ie., / Asin <n—ﬂ)3:A sin (nl>mdx =1
0 L L

L
ie., AQ/ sin® (E)xdx =1
0 L
A2 L
ie., — [1 —cos?2 <w>}d1’ =
2 Jo L

sin(Q"L”> I
—} _

1.€., — |:1' —

(3.28)

(3.29)

(3.30)

(3.31)
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Since sin2nmt =0
—xL=1 (3.32)

A=4/2 (3.33)

/2
Thus equation (3.31) becomes V¥, = I sin <n%> T (3.34)
This is the normalized wave function of particle in a potential box of length
L.

The wave functions and probability densities for a particle in a one

dimensional box is given in the Figure 3.2

& » » r Y
EAE E; - E;
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E: 2 E,
[y 1? £
x=0 x=L "P[ E]
x=0 x=L

Probability distribution
Wave function of first three energy level

Figure 3.2: Energy eigen state of particle in a 1D box
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3.8 Energy Eigen Values

In quantum mechanics, energy eigenvalues represent the specific, discrete
energy values that a quantum system can possess.

According to quantum mechanics, a system can take only certain spe-
cific energies. Such discrete energies are the energy eigen values of the
Schrodinger equation for the system.

Eigen functions: Associated with each energy eigenvalue is an eigen
function, which represents the state of the system when it has that particular
energy. We have

2m 9
=k
272 2 2 2,252
Then E:—kﬁ: n h— :—nﬂh
2m L 2m 2mL>?
Therefore, the energy of the particle trapped inside the potential well is
2,232
E = % wheren=123,... .. (3.35)

For ground state, n =1,
(1)27T2ﬁ2 _ 7T2ﬁ2
omL2  2mL?

For first excited state, n =2
(2)?m2R?  4Am’h?
omL?2  2mL?

For second excited state, n = 3

B (3)2m2h*  9m?h? OF
T omIL?2  o2mr?2 !

Different values of energy for n are called energy eigen values and

2
Uy, =4/ 7 sin(%)x is the energy eigen function.
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3.9 Quantum Mechanical Tunneling

Consider a particle of mass m and energy £/ < Vj incident on a potential
barrier V. Quantum mechanically, there will be a finite probability for the
particle to penetrate through a barrier even if £ < V. This phenomenon of
tunneling through barriers higher than their own incident energy is known
as Quantum Mechanical Tunneling.

Quantum mechanical tunneling is shown in Figure 3.3. The solution
of the Schrodinger equation for the particle gives the wave function for the
three regions.

Vo
transmitted
| I Wave
Il
N\ ANV
Incident wave

Figure 3.3: Quantum Mechanical Tunnelling

The concept of barrier penetration is used to explain a number of phe-
nomenon in physics. Some of them are as follows.

* The emission of a—particles from radioactive nuclei.

* Barrier penetration in electronic devices such as tunnel diode and
Josephson junction.

* Electron tunneling in scanning tunneling microscope.
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3.10 Solved Numerical Problems

Example 3.10.1 Compute the de-Broglie wavelength of an electron whose
kinetic energy is 10eV.

Solution:
We have
_h 6.625 x 10734
V2mE  v/2x9.1x1031 x 10 x 1.6 x 10-19
— 3.88 x 10719

Example 3.10.2 An electron and a proton have the same non-relativistic
kinetic energy. Show that the proton has shorter de-Broglie wavelength.
Solution:

h h
Wehave Ap=-——=— and Ap =
2mpFE 2meFE
e _ [
e U mp

Since mp > me , then A\p < A.. Hence proton has shorter de-Broglie
wavelength.

Example 3.10.3  An electron is confined to a box of length 10~m. Cal-
culate its minimum uncertainty in its velocity.

Solution:

Given A x =107

Az .m szg

B 1.05 x 10734

A’ = =
T 9mAr  2x91x 103 x 10-9

=5.7x 10%m/s

Example 3.10.4 An electron moves with constant speed v = 1.1x 105m/s.
If the speed is measured to a precision of 0.1%, what is the maximum pre-
cision with which its position could be simultaneously measured.
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Solution:
We have p = mv where m is the mass of electron and v is its velocity.
We have m = 9.11 x 103 kgand v = 1.1 x 105m/s

1
AP = f_oo x 107 =107 K gm/s.
Azr = 10~
v =oxap <10
1.054 x 10734 B _
= W X 10 24 :053 X 10 7Kgm/s.

Example 3.10.5 Find the energy of electron moving in 1-D in an infinitely
high potential of width 1A.
Solution:
B, = n?m2h?
2mL?
Putting, n =1,
_(1)? x (3.14)%(1.05 x 10734)2
" 2x9.1x 10731 x (1 x 10710)2
= 5.972 x 10~ "® Joules

Forn=2, E,=5972x2=1.194x 10"'7J

Example 3.10.6 An electron is confined to a 1-D box of width L is known
to be in its first excited state. Determine probability density of electrons in

central half.
/2
U = T sin (%) T

Solution:
2 p
% = Esin2 (%)x
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To find the probability density of electron in central half, z = £

2
2 7\ L
@] = = sin® (%)5 =0

Example 3.10.7 Calculate the separation between the two lowest energy
levels of an electron in a 1-D box of width 4A° in joules. Given m, =
9.1 x 1073 kg and h = 6.625 x 10~3*kg.

Solution:

n2m2h?

2mL?

(1)2 x (3.14)% x (1.05 x 10734)2
2x9.1x 10731 x (4 x 10-10)2
= 3.7 x 10" Joules

Forn=2, E,=4x37x10""9=14.92x 10"1J

E, =

Putting, n=1, FE; =

Fy—E;1=1492x 1079 -37x 1079 =119 x 107¥J

3.11 Exercises

1. Compute the de-Broglie wavelength of an electron whose kinetic energy
is 10KeV.
Hint: 1.2 x 10~ 1'm

2. An electron remains in an excited state of an atom for 10~8s. What is
the minimum uncertainty in the energy of the state in eV.
Hint: 3.28 x 10~ 8¢V

3. An electron is moving in a one dimensional box of infinite height and

width 10A. Calculate the first three permitted energy levels.
Hint: F1 = 5.97 x 10720J; By = 29.85 x 10720J; B3 = 53.73 x 107%0]
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4. For an electron in a 1-D box of width 1A, calculate the first three energy
levels in eV.
Hint: E1 =37.61eV; Ey =150.43eV; E3 =338.47eV

5. Calculate the quantum number associated with a marble of mass 10gm
trapped to move with speed 1m/s in 1-D box of width 20cm.
Hint: n =~ 62103

6. If an electron’s position can be measured to an accuracy of 2 x 10~8m,
how accurately can its velocity be known?
Hint: Av = 2894.28m/s.



