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PREFACE

Authors are very happy to introduce the first edition of book Physics
For Information Science (Group A)'"" as per the revised syllabus and
regulations 2024 of APJ Abdul Kalam Technological University, Thiru-
vananthapuram, Kerala.

Authors have a huge teaching experience in engineering colleges of
high repute, which they have used to provide simplified version of compli-
cated phenomena in Physics. Hope this book will cater to all the needs for
organized studies of the subject.

This book covers the topic like Electrical Conductivity, Superconduc-
tivity, Quantum Concept, Semiconductor Physics, Semiconductor Devices
and Optoelectronic Devices.

This textbook presents the fundamental principles of conducting, semi-
conducting and superconducting materials and their applications in simple
language. Numerous solved problems and exercise problems have been
given at the end of each module.

The salient features of this book is its complete syllabus coverage, sim-
ple and lucid writing style, solved problems and exercise questions.

We would like to extend our heartfelt thanks to the Management, Princi-
pal and colleagues of Ilahia College of Engineering and Technology, Mulavoor,
Muvattupuzha, Ernakulam district, Kerala for providing us with a wonder-
ful environment and encouraging us to bring out this book. We are also
thankful to our Ilahia Publishers for the co-operation and support.

We hope that, this book will be well received by B.Tech students and
faculties alike. We invite suggestions from the reader for making further
improvement to the text.

Authors
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Chapter 1

Electrical Conductivity

In the study of solid state materials, the metals and their alloys occupy
a special position because of their variety of striking properties such as
high electrical and thermal conductivities. The conducting materials play
an important role in the field of engineering and technology. Materials
having low electrical resistivity are known as conductors. Metals and their
alloys belong to this group of materials. In metals, the valence electrons
are loosely bound to their individual atoms. They become free and are
responsible for the conduction of electricity and heat in metals.

The experimental measurements have shown that the metals and their
alloys exhibit large electrical conductivity in the order of 108Q tm 1.
Hence they are known as conductors. The low resistive materials are also
called as conducting materials. The high conductivity of this material is
due to the presence of free electrons.

1.1 Electrical Conduction

If a potential difference V is applied across a solid, it establishes an electric
field E in the solid.

E=— (1.1)

where L is the length of the solid along which charge carriers move. The
electric field accelerates the charge carriers and causes a flow of electric
current through the solid. The current I passing across an area A is defined
as the net charge Q transported through the area per unit time.
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Thus

I= (1.2)

Q
t
Any material can conduct electricity if it contains mobile charge carriers.
Examples for charge carriers are free electron, mobile positive or negative
1ons, holes etc.

The magnitude of the electrical current I, passing through a solid at a
constant temperature is directly proportional to the potential difference V
applied across the solid. This is Ohm’s Law.

I= 7 (1.3)

When electrons travel through solids, they encounter opposition while

moving. This opposition a material offers to the flow of electric current is

called electrical resistance. It is the measure of how much a material resists
the movement of electrons through it.

The electrical resistance offered by a solid is found to be dependent on

the dimensions of the solid. If L is the length and A is the area of cross-

section of the solid, then

L
— 14
RocA (1.4)

L
i.e., R = P Z

Here p is called the electrical resistivity. It is a material constant and does
not depend on the dimensions of the solid.

A
p= RT Ohm-meter or Qm (1.5)
The reciprocal of electrical resistivity is called electrical conductivity (o).
1 L
- - = 1.6
o > T RA (1.6)

Using the equation (1.3) into equation (1.6), we get,

1L
VA
Electrical conductivity o, characterizes the ability of a material to conduct
electricity.

o mho/ meter or @ 'm ™! (1.7)
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Current flowing per unit area of cross section of a current carrying con-
ductor is called Current density.

If I is the current and A is the area of cross-section, then current density
is given by

I
J = e Its unit is A/m2. (1.8)
F tion (1.7) h _ 1! S/
rom equation (1.7), we have o = VA m
\%
R i — =0—
earranging, 1 O’L
Therefore, J =cF (1.9)

The conducting materials are classified into three major categories based
on conductivity.

* Metals and alloys exhibit large conductivity of order 108 Q~1m !

and are therefore, called conductors.

» Materials such as metal oxides, glasses, plastics are found to possess
very low conductivity of the order less than 10712 Q~!m =1, They
are called insulators.

* Materials such as silicon and germanium have values of conductiv-
ity, of the order of 10* to 104 Q~!m ™!, intermediate to those of
conductors and insulators. They are hence called semiconductors.

1.2 Free Electron Model of Solids

The free electron model of solids was proposed by Paul Drude. He assumed
that the valence electrons become free in solids and move about randomly
within the solids much the same way as molecules in a gas confined to a
container. This the free electron model. This theory is applicable to all
solids, both metals and non-metals and it explains electrical, thermal, opti-
cal and magnetic properties of solids.

The free electron theory underwent successive modifications in an at-
tempt to explain the electrical behaviour and the distinction between the
three types of solids.

1. Classical Free Electron Theory: This theory was proposed by Paul
Drude in 1900 and later was extended by Lorentz. Hence this theory
is also known as the Drude-Lorentz Theory.
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In this theory, it was assumed that valence electrons become free in
metals and move about randomly within the metal. Further, it was as-
sumed that the free electrons move in a region of constant potential.
Just as the velocities of molecules in a container, the velocities of
electrons in a solid obey the classical Maxwell-Boltzmann distribu-
tion. This theory successfully explained the Ohm’s law and the high
electrical conductivity of metals, but failed to explain other features
and the distinction between conductors, insulators and semiconduc-
tors.

2. Quantum Free Electron Theory: This theory was developed by
Sommerfield in 1928. This theory uses quantum concepts and hence
it is known as quantum free electron theory. An assembly of free
electrons obey Fermi-Dirac statistics. Based on this, Sommerfield
modified Drude’s Classical free electron theory.

In this theory also, it was assumed that the free electrons move in a
region of constant potential. This theory acknowledges that electrons
exhibit both wave-like and particle-like properties. Due to the wave
nature, electrons in a metal occupy discrete energy levels rather than
a continuous distribution. The distribution of electrons among energy
levels follows Fermi-Dirac statistics, accounting for the wave nature
and the Pauli’s exclusion principle. Even though,it explain most of
the physical properties of the metals like electrical conductivity, ther-
mal conductivity, specific heat capacity of metals etc, it fails to ex-
plain other features and to state the difference between conductor,
semiconductor and insulator.

3. Band Theory of Solids: This theory was formulated by Felix Bloch
in 1928. This theory takes into account that electrons exhibit wave
character as they move between atoms in a solid. It further assumed
that the potential varies in a periodic manner in the solid. This theory
successfully explained the classification of solids into three groups,
namely conductors, insulators and semiconductors.

1.2.1 Classical Free Electron Theory (CFE)

The classical free electron theory of metals was proposed by Paul Drude
in the year 1900 to explain the electrical conduction in metals. This theory
was further extended by H.A. Lorentz in the year 1909.

According to this theory, metals consist of positive ion cores and va-
lence electrons. The ion cores are immobile and consists of positive nucleus
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and the bound electrons. The valence electrons get detached from the par-
ent atom during the process of formation of the metal and move randomly
among these cores. Hence they are known as free electrons.

In Drude’s model, the potential field of the ion cores is considered to
be constant all over the metal and the mutual repulsion among the electrons
is neglected. The free electrons moving within the metal are supposed to
be similar to the freely moving atoms in the perfect gas. These free elec-
trons are called free electron gas. Since the potential energy of a stationary
electron within the metal is less than the potential energy of an identical
electron outside the metal, there is a potential barrier which prevents these
free electrons from escaping from the surface of the metal. As the free
electrons are responsible for conduction of electricity in the metals, they
are called conduction electrons.

Postulates of Classical Free Electron Theory

According to this theory, a metal consists of a very large number of free
electrons. These free electrons move freely throughout the volume of the
metal. The movement of the free electrons is mainly responsible for the
electrical conduction in the metal.

Free ele:{nn gas
‘0. 0.0:-0. 0. O
'@ @ . @ . @ - @'

7

+ye jon core

Figure 1.1: Metal consisting of positive ion cores with the valence electrons
moving freely

* Drude assumed that the free electrons in the metal form an electron
gas. They move randomly in all possible directions just like the gas
molecules move in a container as shown in Figure 1.2.
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Figure 1.2: Random motion of free electrons in the absence of electric field

* In absence of an electrical field, the free electrons move in all direc-
tions in a random manner at an average speed of the order of 105 m/s.
They collide with other free electrons and positive ion core during the
motion and get deflected. This collision is known as elastic collision.
As the motion is random, the resultant velocity in any particular di-
rection is zero and hence this thermal motion of free electron does
not cause flow of current through the metal.

* When the electric field is applied, the electrons get some amount of
energy. These electrons moves in a direction opposite to that of elec-
tric field as shown in Figure 1.3. The directional motion of electrons
due to the action of electric field is called drift.

The drift velocity gained by an electron due to acceleration is lost
completely whenever a collision occurs. After that, the electron gets
accelerated once again and loses its velocity at the next collision.
This process goes on repeating and the electron moves on an average
with a mean drift velocity (vg). The drift velocity is of the order of
10~2m/s. Thus the motion of free electrons in the presence of electric
field, i.e., the drift motion is directional and causes current flow in a
conductor called drift current or conduction current.

* The velocity and the energy distribution of free electrons are gov-
erned by classical Maxwell distribution function.

* Since the electrons are assumed to be a perfect gas, they obey the
laws of kinetic theory of gases.

Therefore, the free electrons are assigned with mean free path (\),
mean collision time (7.) and average velocity.
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> E
Fre% electrons

1—"1—' o+ r___Metal rod
= A g
4o 4 4=

Figure 1.3: Movement of free electrons with applied electric field

* Mean free path()\): The average distance travelled by a free electron
between any two successive collision is known as mean free path.

* Collision time (7.): The average time taken by a free electron be-
tween any two successive collision is known as collision time of the
electron.

* Relaxation time (7): The average time taken by a free electron to
reach its equilibrium state from its disturbed state due to the applica-
tion of an external electric field is called relaxation time. Its value is
of the order of 10~ 4s.

For isotropic materials such as metals, collision time 7. = 7

* Drift velocity (vg): It is defined as the average velocity acquired by
the free electrons of a metal in a particular direction by the applica-
tion of an electric field.

We know that the force experienced by the electron F' = eFE . This
force accelerates the electron and hence it gains acceleration ‘a’. The
acceleration attained by electrons, a = % If 7 is the relaxation time,
the velocity attained by electrons,

E
v:0+e—7'
m

E
Therefore, Drift velocity vy = ——7 (1.10)
m
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Merits of Classical Free Electron Theory

The free electron model is highly successful in explaining many physical
properties of metals.

* It is used to verify Ohm’s Law.
* Itis used to explain electrical and thermal conductivities of metals.
¢ Itis used to derive Wiedemann-Franz law.

¢ Itis used to explain the optical properties of metals.

Drawbacks of Classical Free Electron Theory

Classical Free Electron Theory failed in explaining certain properties of
solids. Some of the important failures of this model are cited below.

* According to Classical Free Electron Theory, all the free electrons
can absorb thermal energy which is not true according to quantum
theory. By quantum theory, only a few electrons absorbs the supplied
energy.

* The electrical conductivity of semiconductors and insulators cannot
be explained by this theory.

* The photoelectric effect, Compton effect and black body radiation
cannot be explained on the basis of Classical Free Electron Theory.

* This theory failed to explain heat capacity of metals.

1.3 Electrical Conductivity in Metals

Let ‘n’ be the free electron density (number of free electrons per unit vol-
ume of the conductor). The total number of electrons in the metal specimen
is given by

N = free electron density x total volume

N =nAL (1.11)
The total charge present in the conductor may be written as

@ = Ne=nALe (1.12)
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The current flowing in the conductor is given by

I:Q:nALe
t t

(1.13)

The term % represents velocity and gives the average drift velocity, v4 of
electrons in the conductor.
I = neAvy (1.14)

The current density is defined J = %
J = nevy (1.15)

Substituting equation (1.10) in the above equation,

2
J = ne<@r> T (1.16)

m

From equation (1.7), we have electrical conductivity

IL

7T va

. _ Vv : _ 1
Since F = I and current density J = s

We have 0 = %

Therefore, Point form of Ohm’s law is
J=0oF (1.17)

Equating RHS of equation (1.16) and equation (1.17), we obtain

o="5T (1.18)
m
Similarly equating RHS of equation (1.15) and equation (1.17),
we obtain new
o= Ed or  o=neu (1.19)

where 1 is called electron mobility.
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Electron Mobility

Electron mobility is the drift velocity of electrons per unit electric field.
We have

vg X F
vg = pk
Ud

or pu=-—
E

Mobility indicates the ease with which electrons move in a solid.

1.4 Fermi Dirac Distribution

Fermi-Dirac statistics deals with the particles having half integral spin like
electrons, protons and neutrons. These particles are known as Fermions.

Fermi distribution function gives the distribution of electrons among
the various energy levels as a function of temperature. It is a probability
function f(E) of an electron occupancy for a given energy level at absolute
zero temperature. It is given by

1

(E_EF>
kT
1+e

Here, E is the energy of the level whose occupancy is being considered.
Er is Fermi energy level; k is Boltzmann constant and T is the absolute
temperature.

The probability value f(E) lies between 0 and 1.

f(E) = (1.20)

 If f(E) =1, the energy level is occupied by an electron.

 If f(E) =0, the energy level is vacant. i.e., it is not occupied by the
electron.

 If f(E) = 0.5, then there is a chance of 50% for the electron occupy-
ing in that energy level.
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1.5 Variation of Fermi Function with Temperature

The Fermi-Dirac distribution is given as

1

(E_EF>
kT
1+e

Case (i): Probability of occupation of electrons at T = 0K

f(E) =

e When T = OK and E < Ep, then the Fermi-Dirac distribution be-

comes
B—— 1
f(E) = 1+ e(B—Er)/0
T 1l4e>® 140

Thus at T = 0K and E < E, there is 100% chance for the electrons
to occupy the energy levels below Fermi energy levels.

e When T = OK and E > Ep, then the Fermi-Dirac distribution be-

comes
1
F(E) = 1 4+ e(E—EF)/0
B 1 1 1 _0
S l4e*® 1400 o0

In this case, there is 0% chance for the electrons to occupy the energy
levels above Fermi energy levels. i.e., all the energy levels above
Fermi energy level are empty.

e When T = OK and E = Ep, then the Fermi-Dirac distribution be-
comes

1
f(B) =1 T e(B=Ep)/0

= m = indeterminate
e
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Case (ii): Probability of occupation of electrons at T > 0K

On heating the conductor, as a result of thermal excitation, the prob-
ability of finding electrons in the levels immediately above Er in-
creases.

AtT>0K E=FEf

1
JE) = T
1
C1+4e0
1 1
“1r1 2

Percentage of f(E) = 50% Hence, there is 50% chance for the elec-
trons to occupy the Fermi energy level. i.e., the value of f(E) be-
comes % at £ = Ep. This result is used to define Fermi energy
level.

When kT > Er, the electron lose their quantum mechanical char-
acter and Fermi distribution function reduces to classical Boltzmann
distribution.

'y A T:2T2>T12 0K
f(E) f(E)
T=0K
" § T \Tz\T: T=0K
e
4L
s
I
0 Er E 0 = E "
(a) (b)

Figure 1.4: Variation of Fermi distribution function with E at different tem-
perature

The variation of f(E) for different values of energy at T = OK become a
step function as shown in Figure 1.4(a). Further for T > OK and E > E,
the probability value falls off rapidly to zero as in Figure 1.4(b).
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1.6 Fermi Energy

Fermi energy represents the highest energy level occupied by an electron
in the metal at 0 K. Fermi energy is the average energy possessed by elec-
trons participating in conduction in metals at temperatures above OK. Thus,
the top most filled energy level at absolute zero temperature is known as
Fermi level and the energy corresponding to this level is called as Fermi
energy Er. At any other temperature above 0K, Fermi Energy is defined
as the energy corresponding to the level at which the probability of electron
occupation is 3 or 50%.

1.7 Energy Bands

In a single isolated atom, the electrons occupy discrete energy level. How-
ever, when atoms come together to form a solid, their electron orbitals over-
lap. This interaction causes the energy levels of the individual atoms to
split and broaden into continuous bands of allowed energy levels. This is
because the wave functions of electrons in adjacent atoms overlap, leading
to the broadening of energy levels into a continuous range of energies as
shown in Figure 1.5 . These range of energies possessed by an electron in
a solid is known as energy band.

Conductian-bantd-
&

Electron Energy (eV)

Forbidden Energy gap Eg

v

Figure 1.5: Energy band diagram
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Valence Band

The electrons in the outermost orbit of an atom are known as valence elec-
trons. The range of energies possessed by valence electrons is known as
valence band. This is the highest energy band that is completely filled or
partially filled with electrons at absolute zero temperature.

Conduction Band

This is the energy band immediately above the valence band. It is usually
empty at absolute zero but can contain electrons at higher temperatures or
when energy is supplied.

In certain cases, the valence electrons are loosely attached to the nu-
cleus. Some of them can move through the solids like free electrons. These
free electrons are responsible for the conduction of current in a conductor.
So they are called conduction electrons. The range of energies possessed
by such electrons is known as conduction band.

Forbidden Energy Gap

The gap between conduction band and valence band is called forbidden
energy gap (E,). This gap determines the electrical conductivity of the
material. The greater the energy gap, more tightly the valence electrons are
bond to the nucleus. An electron can be lifted from the valence band to
the conduction band by applying an energy which is greater than forbidden

energy gap.

1.8 Classification of Materials in Terms of Energy
Bands

The concept of energy bands helps us in understanding the division of solids
into three groups. The nature of energy bands determines whether the solid
is an electrical conductor or insulator. According to the band theory, the
electrical conductivity of a solid is characterised by the energy gap (E,)
separating the outermost energy bands namely the valence band and the
conduction band.



Classification of Materials in Terms of Energy Bands 23

Conductors

With no external energy, all the valence electrons will reside in the valence
band. If the lowest level in the conduction band happens to be lower than
the highest level of the valence band, the electrons from the valence band
can easily move into the conduction band. Normally the conduction band is
empty. But when it overlaps on the valence band electrons can move freely
into it. Therefore, these solids exhibit good electrical conductivity and are
called conductors. The energy band formation in conductors is as shown in
Figure 1.6. Examples: Copper, silver etc.

Cémdumiﬁn -ﬁand

Electron Energy eV

Valenceband

k

Figure 1.6: Energy band formation in Conductors

Insulators

Some solids have large energy gap (£,) which is greater than 5eV. Even if
a large electric field is applied, the electrons cannot jump from the valence
band to the conduction band. So in such solids, valence band is partially or
completely filled while conduction band is empty. Hence they do not allow
the passage of electric current through it and thus they are poor conductors
of electricity. Such solids are called insulators. Examples: Rubber, plastic,
glass etc.
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Conduction-hand
[

Electron Energy (eV)

Eg=5 eV ormore

Y

Figure 1.7: Energy band formation in Insulators

Semiconductors

In some solids, the band gap is narrow and is of the order of 2eV or less as
shown in Figure 1.8.

Conduction band

Electron Energy (eV)

Eg=1.1eVforSi

Figure 1.8: Energy band formation in Semiconductors

Valence band is completely filled and conduction band is empty. At low
temperature (T = OK), no electron is free to cross the small band gap energy
into the conduction band. Those substances whose electrical conductivity



Solved Numerical Problems 25

lies in between that of conductors and insulators are called semiconduc-
tors. But when temperature increases, electron gain energy and cross the
forbidden energy gap which enables conduction. Hence electrical conduc-
tivity of a semiconductor increases with rise in temperature. Examples of
semiconductors are Si with (£y) = 1.1eV and Ge with (E,) = 0.72eV.

1.9 Solved Numerical Problems

Example 1.9.1 Find the drift velocity of free electrons in a copper wire
of cross sectional area 10 mm? when the wire carries a current of 100 A.
Assume that each copper atom contributes one electron to the free electron
gas. Density of copper is 8969 kg/m? and its atomic weight is 63.54.
Solution:

Given that the density of the metal is 8969 kg/m?; atomic weight of
the copper is 63.54 g/mol = 63.54 x10~3 kg/mol and area is 10 mm? =
10x1076 m?.

_ Density x Avogadro’s number
Number of atoms per unit volume = y £

Atomic weight

Since each copper atom contributes one electron, the number of electrons
per unit volume is given as
Density x Avogadro’s number o
n = - - x
Atomic weight

8969 x 6.023 x 10%3

x 1
63.54
= 8.49 x 10%%electrons /m>
1
Drift velocity (V) = vl
ne
100

T 849 x 1028 x 10 x 106 x 1.602 x 10—19
=0.7352 x 10 3m/s
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Example 1.9.2 Find mobility of electrons in copper if there are 9 x 1
valence electrons/m? and the conductivity of copper is 6 x 107 mho/m.
Solution:
Given n = 9 x 10?8 valence electrons/m?> ; conductivity of copper is
o = 6 x 10"mho/m. Electronic charge e = 1.602 x 10~1C
Conductivity o = nep where p is the mobility.
ag

Therefore, Mobility = —
ne

B 6 x 107
T 9% 1028 x 1.602 x 10—19
= 4.16 x 1073m?/V's

Example 1.9.3  Find the relaxation time of conduction electrons in a
metal, if its resistivity is 1.54 x 10~®Qm and it has 5.8 x 10?® conduction
electrons /m?3.

Solution:

Given that the resistivity p = 1.54x10~8Qm; number of conduction elec-
trons n = 5.8 x 102 /m3.

We know that mass of electron is 9.11 x 103! kg and charge of electron is
1.6 x 10719 C.

2

Conductivity, o = ner
m
) ) 1
Relaxation time, 7 = m_(;' - 5 (Since o= —)
ne pne P
_ 9.11 x 1073
154 x 1078 x 5.8 x 1028 x (1.6 x 10~19)2

=39x 10 s

Example 1.9.4  Evaluate the Fermi Function for energy kT above the
Fermi energy.

Solution:

For energy kT above the Fermi energy, we have E =kT + Ep
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Then E — Ep = (kT + Ep) — Ep = kT

1
Fermi function, f(F) = [T (@Bl /FT
_ 1
- 1+€k’T/kT
1 1

= = = 0.269
I+el  1+2.78

Example 1.9.5 In a solid, consider the energy level lying 0.01eV above
Fermi level. What is the probability of this level being occupied by an
electron at 200K?

Solution:

The probability f(E) that a quantum state at energy E is occupied by an

electron is 1

(k) = o(E—Er)/kT
For energy 0.01eV above the Fermi energy, we have E = 0.01 + Er
Then £ — Er = (0.01 + Er) — Er =0.01 eV
We have Boltzmann constant k = 8.617 x 107 eV/K

1 1
HE) = 1+ eE-Er)/KT — 7 + ¢0-01/(8.617x10~5x200)
_ 1 _ 1
"~ 1 4 (0.01/0.0172) T 1 4 0.58
1 1
= = 0.359

1+1.786  2.786

Example 1.9.6 In a solid, consider the energy level lying 0.01eV below
Fermi level. What is the probability of this level being occupied by an
electron at 300K?

Solution:

The probability f(E) that a quantum state at energy E is occupied by an

electron is f(E) = (E—Ep)/kT
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For energy 0.01eV below the Fermi energy, we have E = Er - 0.01eV
Then £ — Er = (Er — 0.01) — EFp =-0.01 eV
We have Boltzmann constant k = 8.617 x 107 eV/K

1 1
F(B) = 1+ e(Br—B)/KT 11 o—001/(8.617x10 5x300)
B 1 o
" 14 —0.01/0.02585 1 4 o—0.387
1 1
= = 0.595

1+0.679  1.679

Example 1.9.7 In a solid, consider the energy level lying 0.01eV below
Fermi level. What is the probability of this level not being occupied by an
electron at 300K?
Solution:

The probability f(F) that a quantum state at energy E is occupied by

an electron is f(F) = o(E—Ep)/kT

The probability of this level not being occupied is given by 1 - f(E).
For energy 0.01eV below the Fermi energy, we have E = Er - 0.01eV
Then £ — Er = (Er — 0.01) — Ep =-0.01 eV

We have Boltzmann constant k = 8.617 x 107 eV/K

1 1
f(B) = 1+ eEr-E)/KT 7 + ¢—0.01/(8.617x 1075 x300)
_ 1 _ 1
14 ¢ 0.01/0.02585 ] 4 —0.387
1 1
= = 0.595

1+0.679  1.679
Therefore, 1 - f(E) =1 -0.595 = 0.405

Example 1.9.8 The Fermi level for potassium is 2.1eV. Calculate the
velocity of the electrons at the Fermi level.
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Solution:
Given Ep = 2.1eV

1
We have Efp = Emv%

2EF

m
_2x21x1.602x 101
a 9.1 x 10-31
=0.74 x 10"m? /s

Vi =

Therefore, velocity of electrons at Fermi level vy = 8.6 10°m/s

1.10 Exercises

1. A copper wire whose diameter 0.16cm carries steady current of 10A.
What is the current density of the wire? Calculate the drift velocity of the
electrons in copper. Given density of electron in copper is 8.5x 10%%m 3.
Hint: ] =497.6x10*A/m?; vg = 3.6 x 10~*m/s

2. A uniform silver wire has a resistivity of 1.34x10~8Qm at room tem-
perature for an electric field of 1volt/cm. Calculate (i) the drift velocity (ii)
the mobility (iii) the relaxation time of electrons assuming that there are
5.8 x 10?8 conduction electrons per m?> of the material.

Hint: vg = 0.804m/s; 7 =4.57x10""s; p=8.04x103m?V 157!

3. Use the Fermi distribution function to obtain the value of f(E) for
E — Er =0.01eV at 300K
Hint: f(E) =0.4045

4. Using Fermi function, evaluate the temperature at which there is 1%
probability that an electron in a metal will have an energy 0.5eV above Er
of SeV.

Hint: T = 1263K



Chapter 2

Superconductivity

The phenomenon of sudden disappearance of electrical resistance in a ma-
terial, when it is cooled below a certain temperature is known as super-
conductivity. This was discovered by Dutch physicist Heike Kammerlingh
Onnes in 1911. During his investigations on the conductivity of metals at
low temperature, he found that the resistance of a mercury sample dropped
to a small value just at the boiling temperature of liquid helium.
T, for Mercury is 4.2K and that for Aluminium is 1.175K

The variation of the electrical resistance with temperature for mercury
is as shown in Figure 2.1. It is found that electrical resistance of pure mer-
cury suddenly drops to zero when it is cooled below 4.2K.

Normalconductor

Y

e
[®

e
b

+—— Superconductor

Electrical Resistance ((})
=]

Temperature T(K)

Figure 2.1: Resistance- Temperature graph for superconductors and non
superconductors.
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2.1 Physical Properties of superconductors

A material which exhibits superconductivity is called superconductor or
superconducting material.

2.1.1 Effect of Temperature - Critical temperature (7}.)

The temperature at which material at normal conducting state changes into
a superconducting state is known as transition temperature (1) or critical
temperature.

Transition temperature depends on the property of the material. It is
found that superconducting transition is reversible. That is, above critical
temperature (7.), the superconductor becomes a normal material. Every
superconductor has its own transition temperature at which it changes into
superconducting state.

2.1.2 Effect of Magnetic Field - Critical magnetic field (H,)

Below transition temperature (7¢) of a superconducting material, its super-
conductivity can be destroyed by the application of a strong magnetic field.
The minimum strength of magnetic field required to destroy the supercon-
ducting nature of a metal at transition temperature is called critical field
(H,).

The critical magnetic field (H.) depends upon the temperature of the
superconducting material. The relation between critical magnetic field and
temperature is given by

T2
H.=Hy|l- = (2.1)
-7
where H, - critical field at TK;  Hj - critical field at OK
T, - transition temperature

It is noted that when the temperature of a material increases, the value
of critical magnetic field decreases correspondingly. The critical magnetic
field is zero at superconducting transition temperature. i.e., at T =1¢ , H,
= 0. The variation of H, with temperature T in a superconductor is shown
in the Figure 2.2.
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Ho

Normal state

v

Figure 2.2: Variation of H, with T

2.1.3 Effect of Electric Current: Silsbee’s effect

A very high electrical current passing through a superconducting material
destroys its superconducting property. The minimum current which can
destroy the superconducting state of a superconductor is defined as critical
current 1.

Let ‘I’ be the current flowing through a superconducting wire. The
flow of high current produces a magnetic field around the conductor which
destroys the superconducting property. The critical current I, required to
destroy the superconducting property is given by

I, = 2nrH, (2.2)

where H, is critical magnetic field and r is radius of superconducting rod
(wire).

The minimum current that can be passed through a superconductor per unit
area of cross section, which destroys its superconducting property is called
critical current density J.

_ 2mrH. 2H.

I,
Je = A 2 r

(2.3)
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2.1.4 Isotope Effect

It was discovered by Maxwell and Reynold in 1950. The variation of tran-
sition temperature with isotopic mass is called isotope effect.
Transition temperature and isotopic mass are inversely proportional.

1
T, e or M®%T, = aconstant (2.4)
where M is isotopic mass.
For most cases, a = %, then

T. x vV M = a constant

2.1.5 Meissner Effect

It was discovered by Meissner and Ochsenfeld in 1933. When a super con-
ducting material in its normal conducting state is placed in a uniform mag-
netic field of flux density B, the magnetic lines of force penetrates through
the material.

When a superconductor is cooled below the critical temperature (7,)
in an external magnetic field (H < H.), then the magnetic field lines are
expelled out of the superconductor, so the magnetic field inside the super-
conductor is zero. This phenomenon is called Meissner effect. This is
shown in the Figure 2.3.

|

Figure 2.3: Magnetic field lines are expelled out of the superconductor
below critical temperature and in a magnetic field (H < H.)

If the superconducting specimen kept at a lower temperature than criti-
cal temperature 7T is slowly heated, the flux suddenly penetrates the speci-
men as it reaches 7, and the specimen becomes a normal conductor. Thus
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we can infer Meissner effect is reversible. Magnetic flux density,
B =po(M + H) (2.5)

where 1 1s permeability of free space; M is magnetization (that is the mag-
netic moment per unit volume); H is the intensity of the external magnetic
field.

From Meissner effect, Magnetic field (B) inside the superconductor is
zero. Hence,

po(M + H) =0
or M=-H
Magnetic susceptibility y = 7= -1 (2.6)
For diamagnets, magnetic susceptibility, x = —1 This means that super-

conducting materials exhibit perfect diamagnetism.

2.2 Types of Superconductors

Based on the magnetic behaviour of supercondutors in an external magnetic
field, they are classified into two types.

1. Type I superconductors

2. Type II superconductors

2.2.1 Type I Superconductors

The superconductors which strictly follow Meissner effect are called Type
I Superconductors. These superconductors exhibit perfect diamagnetism
below a critical field H.. As the applied field is increased beyond H,, the
field penetrates the material completely and the material loses its supercon-
ductivity abruptly.

The magnetisation curve for Type I Superconductor is shown in Figure
2.4. Itis found that the transition from superconducting state to normal state
in the presence of magnetic field occurs sharply at the critical magnetic field
H..
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Superconducting Mormal
state conducting state

HG

L

Figure 2.4: Magnetisation curve for Type I Super conductor

Characteristics of Type I Superconductors

They exhibit complete Meissner effect. They are completely diamag-
netic.

They have only one critical magnetic field.The value of the critical
magnetic field H, is very low.

The maximum known magnetic field for type I superconductor is of
the order of 0.1 Tesla. So a small magnetic field is only required to
destroy the superconducting nature of the material. Hence it is also
known as soft superconductors . So these superconductors cannot be
used for the coils of strong electromagnets.

The magnetisation curve shows that the transition at H.. is reversible.
This means that if the magnetic field is reduced below H., the mate-
rial acquires superconducting property again and the magnetic field
is expelled.

Below H., the material behaves as a superconductor and above H., it
behaves as a normal conductor.

When the field H increases, magnetization M also increases linearly
up to H. .

Transition from superconducting state to normal state is a sudden
process.

Example: Lead, Tin, Aluminium, Mercury.
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2.2.2 Type II Superconductors

Type II superconductor is one in which the material loses its magnetisa-
tion gradually rather than suddenly. The magnetisation curve for type 11
superconductor is given in Figure 2.5.

M &

Superconducting
state

Marmal state

Figure 2.5: Magnetisation curve for Type II Super conductor

Characteristics of Type II Superconductors

Type II superconductors are characterised by two critical fields H;
and H.o

When external field H increases, magnetization M also increases lin-
early up to H.; (lower critical field).

Beyond H,.;1, magnetic field lines slowly penetrate through the spec-
imen, so magnetization M gradually decreases and is equal to zero at
H s (upper critical field).

Beyond H,, , the material changes to normal conductor.
The state in between H.; and His called vortex state.

In Type II superconductor, the transition from superconducting state
to normal state is a gradual process.

The value of H.o is high . i.e., Ho =~ 10T to 20T. So high mag-
netic field is required to destroy superconducting nature. So type II
superconductor is called hard superconductor.

They do not show complete Meissner effect.

They do not behave as perfect diamagnetic materials above H,;.
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* Magnetization curve is irreversible.

* Example: Niobium, Niobium - tin, Niobium — titanium, Germanium

Comparison of Type I And Type II Superconductors

| SL.No | Type I Superconductor

| Type II Superconductor

1

Type I superconductors are
called soft superconductors.

Type II superconductors are
called hard superconductors.

The critical field is very low
which is about 0.1T to 0.2T

The critical field value is very
high which is about 10T to
20T.

Only one critical field H, ex-
its for these superconductors

Two critical fields H.; (lower
critical field) and H o (higher
critical field) exists for these
superconductors.

Type I superconductors ex-
hibit complete Meissner’s ef-
fect

Type II superconductors do
not exhibit complete Meiss-
ner’s effect.

Type I superconductors un-
dergo sudden transition from
superconducting state to nor-
mal state at critical magnetic
field.

Type 1I superconductors un-
dergo gradual transition from
superconducting state to nor-
mal state between two critical
magnetic field.

Type 1 superconducting ma-
terials have limited technical
applications because of their
low critical field strength.

Type II superconducting ma-
terials have wider techno-
logical applications because
of their high critical field
strength.

Examples are Lead (Pb), Tin
(Sn), Mercury (Hg), Zinc
(Zn), Aluminium (Al) etc

Examples are Niobium (Nb),
Niobium - tin (Nb3.5n), Nio-
bium - titanium (NbsT%),
Germanium (Ge), Vanadium
(V) etc

Table 2.1: Comparison of Type I and Type II Superconductors
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Applications of Type II Superconductor

Some of the applications of type II superconductor are listed below.
* Type II superconductors are used in power generators.

* The high magnetic fields produced by type II superconductors are
used in particle accelerators, plasma production, fusion reaction etc.

* Superconducting magnets have been used for magnetic levitation.

* Because type II superconductors can carry very high current densi-
ties, they have great technological importance.

2.3 BCS Theory

In 1957, Bardeen, Cooper and Schriffer developed a new theory to explain
superconductivity called BCS theory. It is based on the formation of Cooper
pair of electrons which is purely a quantum mechanical concept.

During the flow of current in a superconductor, when an electron
approaches a positive ion of the metal lattice, there is a coulomb attraction
between the electron and the lattice ion. As a result, the positive ion will
be displaced from the position due to this interaction. This interaction is
called the electron-phonon interaction.

Now a second electron which approaches the distorted positive ion also
experiences Coulomb attractive force. Thus an interaction occurs between
these two electrons via the lattice. Because of this interaction, an apparent
force of attraction develops between the electrons and they tend to move in
pairs called Cooper pair.

Cooper pair is defined as the pair of electrons formed by the interaction
between the electrons with opposite spin and momenta in the phonon field.

At normal temperature, the attractive force between the two electrons
is too small and pairing of electrons does not take place. But, below the
transition temperature Tc , the apparent force of attraction reaches a maxi-
mum value for any two electrons of equal and opposite spin. This force of
attraction exceeds the Coulomb force of repulsion between two electrons
and the electrons moves as pairs.

The dense cloud of cooper pairs form a collective state and they drift co-
operatively through the material with identical velocity. The small velocity
of cooper pairs combined with their precise ordering minimizes collision
process. The extremely rare collisions of cooper pairs with the lattice leads
to vanishing resistivity. At this stage, the cooper pairs of electrons smoothly



Applications of Superconductors 39

move over the lattice point without any exchange of energy. As a result, the
superconductors possesses infinite electrical conductivity.

The two electrons in a Cooper pair exchanging phonons through lattice
ions is shown in Figure 2.6.

k+g

k; k

Figure 2.6: electron-phonon interaction

Here, an electron &; with a wave vector k1, emits a phonon and change
its state to (k1 — ¢). A second electron €5 with a wave vector ko absorbs
that phonon and change its state to (k2 + q).

Characteristics of Cooper Pairs

* Two electrons in a Cooper pair have opposite momenta and opposite
spin.

* The mass of a Cooper pair is 2m where m is the effective mass of the
electron. The charge of Cooper pair is -2e.

* As the spin of Cooper pair is zero, the Cooper pair behaves like a
Boson, and it does not obey Pauli’s exclusion principle.

* At a temperature less than Tc, almost all free electrons are paired as
Cooper pair. Above Tc, this pairing is broken.

* The binding energy of Cooper pair is of the order of 10 3eV to
10~%eV. It is slightly less than twice the energy of free electron.

2.4 Applications of Superconductors

Superconductors is a basis of new generation of energy saving power sys-
tems. It has a wide range of application from large scale devices like gen-
erators, magnets etc to small scale devices like SQUID, cryotron etc.
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2.5

. Superconductors are used to produce a very strong and powerful

magnetic field in the order of 20T. This high magnetic field is used
in particle accelerators, cyclotrons, controlled nuclear fusion etc.

Medical application

* They are used in MRL

* Superconducting magnetic field is used to remove tumour cell
from the healthy cells.

* Group of squids are used for the diagnosis of epilepsy.

. Electronic and small devices:

* Squid.
* Frictionless bearing, magnetically controlled superconducting

switches, superconductor fuses, breakers, superconducting
transformers.

Electrical machines and measuring instruments.

* Superconducting materials are used to manufacture small size
electrical generators and transformers having high efficiency.
They are used in the construction of very sensitive electrical
measuring instruments such as galvanometer.

. Computers:

* High capacity and high speed computer chips can be developed
with superconductors.

* Used to perform logic and store functions in computers.

Low loss transmission lines can be made with superconductors.

Superconducting Quantum Interference Device

A Superconducting Quantum Interference Device (SQUID) is a very sen-
sitive magnetometer used to measure extremely weak magnetic fields. It is
based on the flux quantization in a superconducting ring. A small change in
magnetic field produces variation in the quantum flux. It consists of super-
conducting ring with two Josephson junctions in parallel. They are capable
of measuring magnetic fluctuations of the order of 10~!® T. Some of the
applications of SQUID are mentioned below.
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* It is used to detect the presence of ships, submarines, by detecting a
small disturbances in the earth magnetic field.

* It is used to measure the weak magnetic pulse generated by heart,
brain in their pathological analysis.

* Principle of SQUID is applied in MRI for the investigation and diag-
nosis of various diseases.

* It is used to explore the oil deposits and other mineral deposits in
different parts of the world.

* Itis useful in the study of earthquakes.

2.6 High Temperature Superconductors

To achieve superconductivity, we have to maintain very low temperature
which is very difficult and expensive. This marks the need for supercon-
ductors with very high 7. The discovery of superconductor with transition
temperature 77K was a remarkable development. This was because we can
use inexpensive liquid nitrogen as coolants to maintain low temperature.
The superconductors with high value of transition temperature 7, are
called High Temperature Superconductors. Substance having 1T, > 24K
are high temperature superconductors. All known high temperature super-
conductors are Type II superconductors. Some of the examples are
Yittrium barium copper oxide (Y-Ba-Cu-O) with 7, 93K;
Thallium barium calcium copper oxide (TI-Ba-Ca-Cu-O) with T}, > 125K;
Mercury thallium barium calcium copper oxide (Hg-Tl-Ba-Ca-Cu-O)
with 77 > 138K.
Characteristics of High - Temperature Superconductors

* They have high transition temperature.
* They have a modified perovskite crystal structure.
* They are oxides of copper in combination with other elements.

» They are reactive, brittle and cannot be easily modified.
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2.7 Solved Numerical Problems

Example 2.7.1 For a certain metal, the critical magnetic field is

5 x 103A/m at 6K and 2 x 10*A/m at OK. Determine its transition
temperature.

Solution:

Given H. = 5 x 103A/m;Hy = 2 x 10*A/m;T = 6K

T2
We have H.= Hj [1 — ﬁ]
T 6
Then 7T,.= —— = 5 = 6.93K
| _ A / L 1031Y
Hy 2 x 104

Example 2.7.2  Calculate the critical current which can flow through a
long thin superconducting wire of diameter 10~3m.
Given H, = 7.9 x 103A/m.
Solution:
3,

Given H. = 7.9 x 10?A/m and r = NT

From Silsbee rule I. = 27nrH,

_ 2x3.14x 1073 x 7.9 x 103
B 2

= 24.81A

Example 2.7.3  Superconducting tin has a critical temperature of 3.7K
at zero magnetic field and a critical field of 0.0306 Tesla at OK. Find the
critical field at 2K.

Solution:

Given 1. = 3.7K; Hy = 0.0306 Tesla; T = 2K

T2
We know that the critical field, H. = Hj [1 — ﬁ}

(2)?

= 0.0306 [1 — W

] = 0.021661T°
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Therefore, the critical field at 2K, H.= 0.02166 Tesla

Example 2.7.4 The critical temperature for a metal with isotopic mass
199.5 is 4.185K. Calculate the isotopic mass if the critical temperature falls
to 4.133K.

Solution:

Given T, = 4.185K; M1 =199.5; T.o = 4.133K

We know that T,; x (]\41)1/ 2 — a constant
Thatis  T.i(M;)Y/? = T.o(My)'/?
<T> _ M
T Mo
Tcl > 2
My =My x | —
= x (72

A — 1995 % (4.185)?
T (4.133)2

= 204.55amu

Example 2.7.5 The critical temperature of a superconductor at zero mag-
netic field is 7.. Determine the temperature at which the critical field be-
comes half of its value at OK.

Solution:

1
We have H. = §H0



