Module 1

Arguments and Venn Diagrams

EXAMPLE 1.3 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author of *Alice in Wonderland*) is valid:

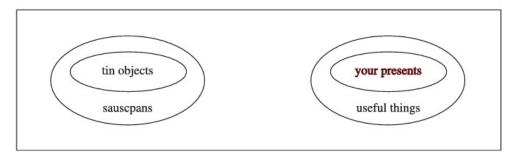
- S_1 : All my tin objects are saucepans.
- S₂: I find all your presents very useful.
- S_3 : None of my saucepans is of the slightest use.

S: Your presents to me are not made of tin.

The statements S_1 , S_2 , and S_3 above the horizontal line denote the assumptions, and the statement S below the line denotes the conclusion. The argument is valid if the conclusion S follows logically from the assumptions S_1 , S_2 , and S_3 .

By S_1 the tin objects are contained in the set of saucepans, and by S_3 the set of saucepans and the set of useful things are disjoint. Furthermore, by S_2 the set of "your presents" is a subset of the set of useful things. Accordingly, we can draw the Venn diagram in Fig. 1-2.

The conclusion is clearly valid by the Venn diagram because the set of "your presents" is disjoint from the set of tin objects.



EXAMPLE 1.5 Suppose $U = N = \{1, 2, 3, ...\}$ is the universal set. Let

$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7\}, C = \{2, 3, 8, 9\}, E = \{2, 4, 6, \ldots\}$$

(Here E is the set of even integers.) Then:

$$A^{C} = \{5, 6, 7, \ldots\}, \quad B^{C} = \{1, 2, 8, 9, 10, \ldots\}, \quad E^{C} = \{1, 3, 5, 7, \ldots\}$$

That is, E^{C} is the set of odd positive integers. Also:

$$\begin{array}{ll} A \setminus B = \{1, 2\}, & A \setminus C = \{1, 4\}, & B \setminus C = \{4, 5, 6, 7\}, & A \setminus E = \{1, 3\}, \\ B \setminus A = \{5, 6, 7\}, & C \setminus A = \{8, 9\}, & C \setminus B = \{2, 8, 9\}, & E \setminus A = \{6, 8, 10, 12, \ldots\}. \end{array}$$

Furthermore:

$$A \oplus B = (A \setminus B) \cup (B \setminus A) = \{1, 2, 5, 6, 7\}, \quad B \oplus C = \{2, 4, 5, 6, 7, 8, 9\}, \\ A \oplus C = (A \setminus C) \cup (B \setminus C) = \{1, 4, 8, 9\}, \quad A \oplus E = \{1, 3, 6, 8, 10, \ldots\}.$$

EXAMPLE 1.7

- (a) The set *A* of the letters of the English alphabet and the set *D* of the days of the week are finite sets. Specifically, *A* has 26 elements and *D* has 7 elements.
- (b) Let *E* be the set of even positive integers, and let **I** be the *unit interval*, that is,

$$E = \{2, 4, 6, \ldots\}$$
 and $\mathbf{I} = [0, 1] = \{x \mid 0 \le x \le 1\}$

Then both E and I are infinite.

A set *S* is *countable* if *S* is finite or if the elements of *S* can be arranged as a sequence, in which case *S* is said to be *countably infinite*; otherwise *S* is said to be *uncountable*. The above set *E* of even integers is countably infinite, whereas one can prove that the unit interval I = [0, 1] is uncountable.

Inclusion-Exclusion Principle

There is a formula for $n(A \cup B)$ even when they are not disjoint, called the Inclusion–Exclusion Principle. Namely:

Theorem (Inclusion–Exclusion Principle) 1.9: Suppose A and B are finite sets. Then $A \cup B$ and $A \cap B$ are finite and

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

That is, we find the number of elements in *A* or *B* (or both) by first adding n(A) and n(B) (inclusion) and then subtracting $n(A \cap B)$ (exclusion) since its elements were counted twice.

We can apply this result to obtain a similar formula for three sets:

Corollary 1.10: Suppose A, B, C are finite sets. Then $A \cup B \cup C$ is finite and

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

EXAMPLE 1.8 Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists. Find the number of students: (a) only on list A, (b) only on list B, (c) on list A or B (or both), (d) on exactly one list.

- (a) List A has 30 names and 20 are on list B; hence 30 20 = 10 names are only on list A.
- (b) Similarly, 35 20 = 15 are only on list *B*.
- (c) We seek $n(A \cup B)$. By inclusion–exclusion,

$$n(A \cup B) = n(A) + n(B) - n(A \cap B) = 30 + 35 - 20 = 45.$$

In other words, we combine the two lists and then cross out the 20 names which appear twice.

(d) By (a) and (b), 10 + 15 = 25 names are only on one list; that is, $n(A \oplus B) = 25$.

Power Sets

For a given set S, we may speak of the class of all subsets of S. This class is called the *power set* of S, and will be denoted by P(S). If S is finite, then so is P(S). In fact, the number of elements in P(S) is 2 raised to the power n(S). That is,

$$n(P(S)) = 2^{n(S)}$$

(For this reason, the power set of S is sometimes denoted by 2^{S} .)

EXAMPLE 1.10 Suppose $S = \{1, 2, 3\}$. Then

$$P(S) = [\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, S]$$

Note that the empty set \emptyset belongs to P(S) since \emptyset is a subset of S. Similarly, S belongs to P(S). As expected from the above remark, P(S) has $2^3 = 8$ elements.

Partitions

Let S be a nonempty set. A *partition* of S is a subdivision of S into nonoverlapping, nonempty subsets. Precisely, a *partition* of S is a collection $\{A_i\}$ of nonempty subsets of S such that:

- (i) Each a in S belongs to one of the A_i .
- (ii) The sets of $\{A_i\}$ are mutually disjoint; that is, if

$$A_i \neq A_k$$
 then $A_i \cap A_k = \emptyset$

The subsets in a partition are called *cells*. Figure 1-6 is a Venn diagram of a partition of the rectangular set S of points into five cells, A_1 , A_2 , A_3 , A_4 , A_5 .

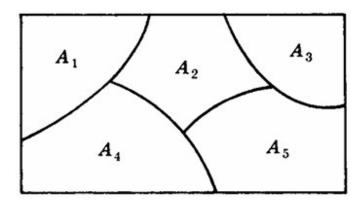


Fig. 1-6

EXAMPLE 1.11 Consider the following collections of subsets of $S = \{1, 2, ..., 8, 9\}$:

- (i) $[\{1, 3, 5\}, \{2, 6\}, \{4, 8, 9\}]$
- (ii) $[\{1, 3, 5\}, \{2, 4, 6, 8\}, \{5, 7, 9\}]$
- (iii) $[\{1, 3, 5\}, \{2, 4, 6, 8\}, \{7, 9\}]$

Then (i) is not a partition of S since 7 in S does not belong to any of the subsets. Furthermore, (ii) is not a partition of S since $\{1, 3, 5\}$ and $\{5, 7, 9\}$ are not disjoint. On the other hand, (iii) is a partition of S.

1.8 MATHEMATICAL INDUCTION

An essential property of the set $N = \{1, 2, 3, ...\}$ of positive integers follows:

Principle of Mathematical Induction I: Let *P* be a proposition defined on the positive integers N; that is, P(n) is either true or false for each $n \in \mathbb{N}$. Suppose *P* has the following two properties:

- (i) P(1) is true.
- (ii) P(k+1) is true whenever P(k) is true.
- Then *P* is true for every positive integer $n \in \mathbf{N}$.

EXAMPLE 1.13 Let P be the proposition that the sum of the first n odd numbers is n^2 ; that is,

$$P(n): 1 + 3 + 5 + \dots + (2n - 1) = n^2$$

(The *k*th odd number is 2k - 1, and the next odd number is 2k + 1.) Observe that P(n) is true for n = 1; namely,

$$P(1) = 1^2$$

Assuming P(k) is true, we add 2k + 1 to both sides of P(k), obtaining

$$1 + 3 + 5 + \dots + (2k - 1) + (2k + 1) - k^2 + (2k + 1) = (k + 1)^2$$

which is P(k + 1). In other words, P(k + 1) is true whenever P(k) is true. By the principle of mathematical induction, P is true for all n.

Principle of Mathematical Induction II: Let *P* be a proposition defined on the positive integers N such that: (i) P(1) is true.

(ii) P(k) is true whenever P(j) is true for all $1 \le j < k$. Then *P* is true for every positive integer $n \in \mathbb{N}$.

Solved Problems

SETS AND SUBSETS

- 1.1 Which of these sets are equal: {x, y, z}, {z, y, z, x}, {y, x, y, z}, {y, z, x, y}? They are all equal. Order and repetition do not change a set.
- **1.2** List the elements of each set where $\mathbf{N} = \{1, 2, 3, ...\}$.

(a)
$$A = \{x \in \mathbb{N} \mid 3 < x < 9\}$$

- (b) $B = \{x \in \mathbb{N} \mid x \text{ is even, } x < 11\}$
- (c) $C = \{x \in \mathbb{N} | 4 + x = 3\}$
- (a) A consists of the positive integers between 3 and 9; hence $A = \{4, 5, 6, 7, 8\}$.
- (b) B consists of the even positive integers less than 11; hence $B = \{2, 4, 6, 8, 10\}$.
- (c) No positive integer satisfies 4 + x = 3; hence $C = \emptyset$, the empty set.

- **1.3** Let $A = \{2, 3, 4, 5\}$.
 - (a) Show that A is not a subset of $B = \{x \in \mathbb{N} \mid x \text{ is even}\}.$
 - (b) Show that A is a proper subset of $C = \{1, 2, 3, ..., 8, 9\}$.
 - (a) It is necessary to show that at least one element in A does not belong to B. Now $3 \in A$ and, since B consists of even numbers, $3 \notin B$; hence A is not a subset of B.
 - (b) Each element of A belongs to C so $A \subseteq C$. On the other hand, $1 \in C$ but $1 \notin A$. Hence $A \neq C$. Therefore A is a proper subset of C.

1.5 Consider the sets in the preceding Problem 1.4. Find:

(a) A^{C} , B^{C} , D^{C} , E^{C} ; (b) $A \setminus B$, $B \setminus A$, $D \setminus E$; (c) $A \oplus B$, $C \oplus D$, $E \oplus F$. Recall that:

- (1) The complements X^{C} consists of those elements in **U** which do not belong to X.
- (2) The difference $X \setminus Y$ consists of the elements in X which do not belong to Y.
- (3) The symmetric difference $X \oplus Y$ consists of the elements in X or in Y but not in both.

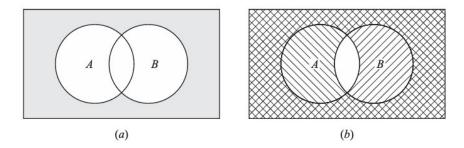
Therefore:

- (a) $A^{C} = \{6, 7, 8, 9\}; B^{C} = \{1, 2, 3, 8, 9\}; D^{C} = \{2, 4, 6, 8\} = E; E^{C} = \{1, 3, 5, 7, 9\} = D.$
- $(b) \ A \backslash B = \{1,2,3\}; \ B \backslash A = \{6,7\}; \ D \backslash E = \{1,3,5,7,9\} = D; \ F \backslash D = \emptyset.$
- (c) $A \oplus B = \{1, 2, 3, 6, 7\}; C \oplus D = \{1, 3, 6, 8\}; E \oplus F = \{2, 4, 6, 8, 1, 5, 9\} = E \cup F.$
- **1.6** Show that we can have: (a) $A \cap B = A \cap C$ without B = C; (b) $A \cup B = A \cup C$ without B = C.
 - (a) Let $A = \{1, 2\}, B = \{2, 3\}, C = \{2, 4\}$. Then $A \cap B = \{2\}$ and $A \cap C = \{2\}$; but $B \neq C$.
 - (b) Let $A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\}$. Then $A \cup B = \{1, 2, 3\}$ and $A \cup C = \{1, 2, 3\}$ but $B \neq C$.
- **1.7** Prove: $B \setminus A = B \cap A^C$. Thus, the set operation of difference can be written in terms of the operations of intersection and complement.

$$B \setminus A = \{x \mid x \in B, x \notin A\} = \{x \mid x \in B, x \in A^{\mathbb{C}}\} = B \cap A^{\mathbb{C}}.$$

1.9 Illustrate DeMorgan's Law $(A \cup B)^{C} = A^{C} \cap B^{C}$ using Venn diagrams.

Shade the area outside $A \cup B$ in a Venn diagram of sets A and B. This is shown in Fig. 1-7(a); hence the shaded area represents $(A \cup B)^{C}$. Now shade the area outside A in a Venn diagram of A and B with strokes in one direction (////), and then shade the area outside B with strokes in another direction (////). This is shown in Fig. 1-7(b); hence the cross-hatched area (area where both lines are present) represents $A^{C} \cap B^{C}$. Both $(A \cup B)^{C}$ and $A^{C} \cap B^{C}$ are represented by the same area; thus the Venn diagram indicates $(A \cup B)^{C} = A^{C} \cap B^{C}$. (We emphasize that a Venn diagram is not a formal proof, but it can indicate relationships between sets.)



1.13 Determine the validity of the following argument:

 S_1 : All my friends are musicians.

- S_2 : John is my friend.
- S_3 : None of my neighbors are musicians.

S : John is not my neighbor.

The premises S_1 and S_3 lead to the Venn diagram in Fig. 1-8(*a*). By S_2 , John belongs to the set of friends which is disjoint from the set of neighbors. Thus S is a valid conclusion and so the argument is valid.

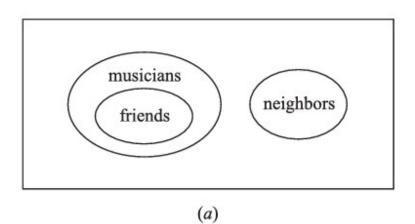


Fig. 1-8

1.14 Each student in Liberal Arts at some college has a mathematics requirement *A* and a science requirement *B*. A poll of 140 sophomore students shows that:

60 completed A, 45 completed B, 20 completed both A and B.

Use a Venn diagram to find the number of students who have completed:

(a) At least one of A and B; (b) exactly one of A or B; (c) neither A nor B.

Translating the above data into set notation yields:

 $n(A) = 60, n(B) = 45, n(A \cap B) = 20, n(U) = 140$

Draw a Venn diagram of sets A and B as in Fig. 1-1(c). Then, as in Fig. 1-8(b), assign numbers to the four regions as follows:

20 completed both A and B, so $n(A \cap B) = 20$.

60 - 20 = 40 completed A but not B, so $n(A \setminus B) = 40$.

45 - 20 = 25 completed *B* but not *A*, so $n(B \setminus A) = 25$.

140 - 20 - 40 - 25 = 55 completed neither *A* nor *B*.

By the Venn diagram:

(a) 20 + 40 + 25 = 85 completed A or B. Alternately, by the Inclusion–Exclusion Principle: $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 60 + 45 - 20 = 85$

(b) 40 + 25 = 65 completed exactly one requirement. That is, $n(A \oplus B) = 65$.

(c) 55 completed neither requirement, i.e. $n(A^{\mathbb{C}} \cap B^{\mathbb{C}}) = n[(A \cup B)^{\mathbb{C}}] = 140 - 85 = 55$.

1.15 In a survey of 120 people, it was found that:

65 read Newsweek magazine,	20 read both Newsweek and Time,
45 read Time,	25 read both Newsweek and Fortune,
42 read Fortune,	15 read both Time and Fortune,
8 read all three magazines.	

- (a) Find the number of people who read at least one of the three magazines.
- (b) Fill in the correct number of people in each of the eight regions of the Venn diagram in Fig. 1-9(a) where N, T, and F denote the set of people who read *Newsweek*, *Time*, and *Fortune*, respectively.
- (c) Find the number of people who read exactly one magazine.

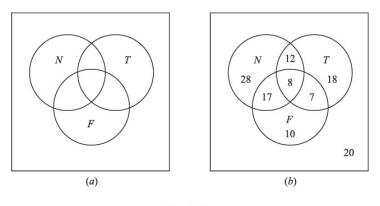


Fig. 1-9

(a) We want to find $n(N \cup T \cup F)$. By Corollary 1.10 (Inclusion–Exclusion Principle),

 $n(N \cup T \cup F) = n(N) + n(T) + n(F) - n(N \cap T) - n(N \cap F) - n(T \cap F) + n(N \cap T \cap F)$ = 65 + 45 + 42 - 20 - 25 - 15 + 8 = 100

(b) The required Venn diagram in Fig. 1-9(b) is obtained as follows:

8 read all three magazines,

20 - 8 = 12 read *Newsweek* and *Time* but not all three magazines,

- 25 8 = 17 read *Newsweek* and *Fortune* but not all three magazines,
- 15 8 = 7 read *Time* and *Fortune* but not all three magazines,
- 65 12 8 17 = 28 read only *Newsweek*,
- 45 12 8 7 = 18 read only *Time*,
- 42 17 8 7 = 10 read only *Fortune*,
- 120 100 = 20 read no magazine at all.
- (c) 28 + 18 + 10 = 56 read exactly one of the magazines.

1.18 Determine the power set P(A) of $A = \{a, b, c, d\}$.

The elements of P(A) are the subsets of A. Hence

 $P(A) = [A, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset]$

As expected, P(A) has $2^4 = 16$ elements.

1.19 Let $S = \{a, b, c, d, e, f, g\}$. Determine which of the following are partitions of S:

(a)
$$P_1 = [\{a, c, e\}, \{b\}, \{d, g\}],$$
 (c) $P_3 = [\{a, b, e, g\}, \{c\}, \{d, f\}],$
(b) $P_2 = [\{a, e, g\}, \{c, d\}, \{b, e, f\}],$ (d) $P_4 = [\{a, b, c, d, e, f, g\}].$

- (a) P_1 is not a partition of S since $f \in S$ does not belong to any of the cells.
- (b) P_2 is not a partition of S since $e \in S$ belongs to two of the cells.
- (c) P_3 is a partition of S since each element in S belongs to exactly one cell.
- (d) P_4 is a partition of S into one cell, S itself.

1.20 Find all partitions of $S = \{a, b, c, d\}$.

Note first that each partition of S contains either 1, 2, 3, or 4 distinct cells. The partitions are as follows:

- (1) $[\{a, b, c, d\}]$
- (2) $[\{a\}, \{b, c, d\}], [\{b\}, \{a, c, d\}], [\{c\}, \{a, b, d\}], [\{d\}, \{a, b, c\}], [\{a, b\}, \{c, d\}], [\{a, c\}, \{b, d\}], [\{a, d\}, \{b, c\}]$
- (3) $[\{a\}, \{b\}, \{c, d\}], [\{a\}, \{c\}, \{b, d\}], [\{a\}, \{d\}, \{b, c\}], [\{b\}, \{c\}, \{a, d\}], [\{b\}, \{d\}, \{a, c\}], [\{c\}, \{d\}, \{a, b\}]$
- (4) $[\{a\}, \{b\}, \{c\}, \{d\}]$

There are 15 different partitions of S.

- **1.21** Let $N = \{1, 2, 3, ...\}$ and, for each $n \in N$, Let $A_n = \{n, 2n, 3n, ...\}$. Find:
 - (a) $A_3 \cap A_5$; (b) $A_4 \cap A_5$; (c) $\bigcup_{i \in Q} A_i$ where $Q = \{2, 3, 5, 7, 11, ...\}$ is the set of prime numbers.
 - (a) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence $A_3 \cap A_5 = A_{15}$.
 - (b) The multiples of 12 and no other numbers belong to both A_4 and A_6 , hence $A_4 \cap A_6 = A_{12}$.
 - (c) Every positive integer except 1 is a multiple of at least one prime number; hence

$$\bigcup_{i\in Q} A_i = \{2, 3, 4, \ldots\} = \mathbf{N} \setminus \{1\}$$

MATHEMATICAL INDUCTION

1.24 Prove the proposition P(n) that the sum of the first *n* positive integers is $\frac{1}{2}n(n+1)$; that is,

$$P(n) = 1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$

The proposition holds for n = 1 since:

$$P(1): 1 = \frac{1}{2}(1)(1+1)$$

Assuming P(k) is true, we add k + 1 to both sides of P(k), obtaining

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{1}{2}k(k + 1) + (k + 1)$$
$$= \frac{1}{2}[k(k + 1) + 2(k + 1)]$$
$$= \frac{1}{2}[(k + 1)(k + 2)]$$

which is P(k + 1). That is, P(k + 1) is true whenever P(k) is true. By the Principle of Induction, P is true for all n.

Relations

EXAMPLE 2.2 Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$ $B \times A = \{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)\}$

Also, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

EXAMPLE 2.3

(a) A = (1, 2, 3) and $B = \{x, y, z\}$, and let $R = \{(1, y), (1, z), (3, y)\}$. Then R is a relation from A to B since R is a subset of $A \times B$. With respect to this relation,

1Ry, 1Rz, 3Ry, but 1Rx, 2Rx, 2Ry, 2Rz, 3Rx, 3Rz

The domain of *R* is $\{1, 3\}$ and the range is $\{y, z\}$.

- (b) Set inclusion \subseteq is a relation on any collection of sets. For, given any pair of set A and B, either $A \subseteq B$ or $A \not\subseteq B$.
- (c) A familiar relation on the set **Z** of integers is "*m* divides *n*." A common notation for this relation is to write m | n when *m* divides *n*. Thus 6 | 30 but $7 \nmid 25$.

Inverse Relation

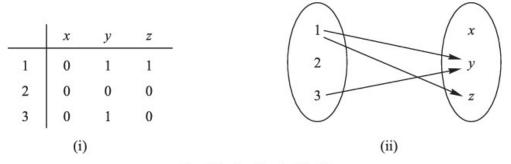
Let *R* be any relation from a set *A* to a set *B*. The *inverse* of *R*, denoted by R^{-1} , is the relation from *B* to *A* which consists of those ordered pairs which, when reversed, belong to *R*; that is,

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}$$

For example, let $A = \{1, 2, 3\}$ and $B = \{x, y, z\}$. Then the inverse of

$$R = \{(1, y), (1, z), (3, y)\}$$
 is $R^{-1} = \{(y, 1), (z, 1), (y, 3)\}$

PICTURE REPRESENTATION OF RELATION



 $R = \{(1, y), (1, z), (3, y)\}$

2.2. Find x and y given (2x, x + y) = (6, 2). Two ordered pairs are equal if and only if the corresponding components are equal. Hence we obtain the equations

2x = 6 and x + y = 2

from which we derive the answers x = 3 and y = -1.

2.3. Find the number of relations from $A = \{a, b, c\}$ to $B = \{1, 2\}$. There are 3(2) = 6 elements in $A \times B$, and hence there are $m = 2^6 = 64$ subsets of $A \times B$. Thus there are m = 64 relations from A to B. **2.4.** Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B:

$$R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$$

- (a) Determine the matrix of the relation.
- (b) Draw the arrow diagram of R.
- (c) Find the inverse relation R^{-1} of R.
- (d) Determine the domain and range of R.
- (a) See Fig. 2-6(a) Observe that the rows of the matrix are labeled by the elements of A and the columns by the elements of B. Also observe that the entry in the matrix corresponding to $a \in A$ and $b \in B$ is 1 if a is related to b and 0 otherwise.
- (b) See Fig. 2.6(b) Observe that there is an arrow from $a \in A$ to $b \in B$ iff a is related to b, i.e., iff $(a, b) \in R$.

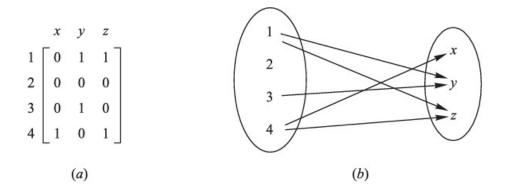


Fig. 2-6

(c) Reverse the ordered pairs of R to obtain R^{-1} :

$$R^{-1} = \{(y, 1), (z, 1), (y, 3), (x, 4), (z, 4)\}$$

Observe that by reversing the arrows in Fig. 2.6(*b*), we obtain the arrow diagram of R^{-1} .

(d) The domain of R, Dom(R), consists of the first elements of the ordered pairs of R, and the range of R, Ran(R), consists of the second elements. Thus,

 $Dom(R) = \{1, 3, 4\}$ and $Ran(R) = \{x, y, z\}$

2.5. Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$, and $C = \{x, y, z\}$. Consider the following relations R and S from A to B and from B to C, respectively.

$$R = \{(1, b), (2, a), (2, c)\}$$
 and $S = \{(a, y), (b, x), (c, y), (c, z)\}$

- (a) Find the composition relation $R \circ S$.
- (b) Find the matrices M_R , M_S , and $M_{R \circ S}$ of the respective relations R, S, and $R \circ S$, and compare $M_{R \circ S}$ to the product $M_R M_S$.
- (a) Draw the arrow diagram of the relations R and S as in Fig. 2-7(a). Observe that 1 in A is "connected" to x in C by the path 1 → b → x; hence (1, x) belongs to R ∘ S. Similarly, (2, y) and (2, z) belong to R ∘ S. We have

$$R \circ S = \{(1, x), (2, y), (2, z)\}\$$

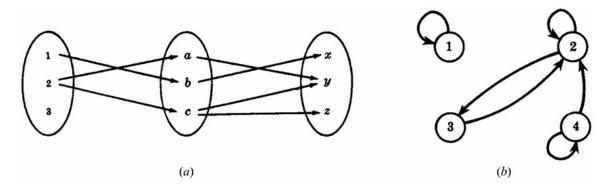


Fig. 2-7

(b) The matrices of M_R , M_S , and $M_{R \circ S}$ follow:

$$M_{R} = \begin{array}{c} 1\\ 2\\ 3\end{array} \begin{bmatrix} \begin{array}{c} a & b & c \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \end{bmatrix} \quad \begin{array}{c} a\\ M_{S} = \begin{array}{c} x & y & z \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \end{bmatrix} \quad \begin{array}{c} M_{R \circ S} = \begin{array}{c} 2\\ 1\\ 0 \\ 3\end{array} \begin{bmatrix} \begin{array}{c} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \end{bmatrix}$$

Multiplying M_R and M_S we obtain

$$M_R M_S = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

Observe that $M_{R \circ S}$ and $M_R M_S$ have the same zero entries.

TYPES OF RELATIONS AND CLOSURE PROPERTIES

2.9. Consider the following five relations on the set $A = \{1, 2, 3\}$:

 $R = \{(1, 1), (1, 2), (1, 3), (3, 3)\}, \qquad \emptyset = \text{empty relation} \\ S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}, \qquad A \times A = \text{universal relation} \\ T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$

Determine whether or not each of the above relations on A is: (a) reflexive; (b) symmetric; (c) transitive; (d) antisymmetric.

- (a) R is not reflexive since $2 \in A$ but $(2, 2) \notin R$. T is not reflexive since $(3, 3) \notin T$ and, similarly, \emptyset is not reflexive. S and $A \times A$ are reflexive.
- (b) R is not symmetric since $(1, 2) \in R$ but $(2, 1) \notin R$, and similarly T is not symmetric. S, \emptyset , and $A \times A$ are symmetric.
- (c) *T* is not transitive since (1, 2) and (2, 3) belong to *T*, but (1, 3) does not belong to *T*. The other four relations are transitive.
- (d) S is not antisymmetric since $1 \neq 2$, and (1, 2) and (2, 1) both belong to S. Similarly, $A \times A$ is not antisymmetric.

2.10. Give an example of a relation R on $A = \{1, 2, 3\}$ such that:

- (a) R is both symmetric and antisymmetric.
- (b) R is neither symmetric nor antisymmetric.
- (c) R is transitive but $R \cup R^{-1}$ is not transitive.

There are several such examples. One possible set of examples follows:

(a) $R = \{(1, 1), (2, 2)\};$ (b) $R = \{(1, 2), (2, 3)\};$ (c) $R = \{(1, 2)\}.$

- **2.13.** Consider the relation $R = \{(a, a), (a, b), (b, c), (c, c)\}$ on the set $A = \{a, b, c\}$. Find: (a) reflexive(R); (b) symmetric(R); (c) transitive(R).
 - (a) The reflexive closure on R is obtained by adding all diagonal pairs of $A \times A$ to R which are not currently in R. Hence,

reflexive $(R) = R \cup \{(b, b)\} = \{(a, a), (a, b), (b, b), (b, c), (c, c)\}$

(b) The symmetric closure on R is obtained by adding all the pairs in R^{-1} to R which are not currently in R. Hence,

symmetric(R) = $R \cup \{(b, a), (c, b)\} = \{(a, a), (a, b), (b, a), (b, c), (c, b), (c, c)\}$

(c) The transitive closure on R, since A has three elements, is obtained by taking the union of R with $R^2 = R \circ R$ and $R^3 = R \circ R \circ R$. Note that

$$R^{2} = R \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$$

$$R^{3} = R \circ R \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$$

Hence

transitive(
$$R$$
) = $R \cup R^2 \cup R^3 = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$

EQUIVALENCE RELATIONS AND PARTITIONS

2.14. Consider the Z of integers and an integer m > 1. We say that x is congruent to y modulo m, written

$$x \equiv y \pmod{m}$$

if x - y is divisible by *m*. Show that this defines an equivalence relation on **Z**.

We must show that the relation is reflexive, symmetric, and transitive.

- (i) For any x in Z we have $x \equiv x \pmod{m}$ because x x = 0 is divisible by m. Hence the relation is reflexive.
- (ii) Suppose $x \equiv y \pmod{m}$, so x y is divisible by m. Then -(x y) = y x is also divisible by m, so $y \equiv x \pmod{m}$. Thus the relation is symmetric.
- (iii) Now suppose $x \equiv y \pmod{m}$ and $y \equiv z \pmod{m}$, so x y and y z are each divisible by m. Then the sum

$$(x - y) + (y - z) = x - z$$

is also divisible by *m*; hence $x \equiv z \pmod{m}$. Thus the relation is transitive.

Accordingly, the relation of congruence modulo m on \mathbf{Z} is an equivalence relation.

2.15. Let A be a set of nonzero integers and let \approx be the relation on $A \times A$ defined by

 $(a, b) \approx (c, d)$ whenever ad = bc

Prove that \approx is an equivalence relation.

We must show that \approx is reflexive, symmetric, and transitive.

- (i) *Reflexivity*: We have $(a, b) \approx (a, b)$ since ab = ba. Hence \approx is reflexive.
- (ii) Symmetry: Suppose $(a, b) \approx (c, d)$. Then ad = bc. Accordingly, cb = da and hence (c, d) = (a, b). Thus, \approx is symmetric.
- (iii) Transitivity: Suppose $(a, b) \approx (c, d)$ and $(c, d) \approx (e, f)$. Then ad = bc and cf = de. Multiplying corresponding terms of the equations gives (ad)(cf) = (bc)(de). Canceling $c \neq 0$ and $d \neq 0$ from both sides of the equation yields af = be, and hence $(a, b) \approx (e, f)$. Thus \approx is transitive. Accordingly, \approx is an equivalence relation.
- **2.16.** Let *R* be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$:

 $R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$

Find the partition of A induced by R, i.e., find the equivalence classes of R.

Those elements related to 1 are 1 and 5 hence

$$[1] = \{1, 5\}$$

We pick an element which does not belong to [1], say 2. Those elements related to 2 are 2, 3, and 6, hence

 $[2] = \{2, 3, 6\}$

The only element which does not belong to [1] or [2] is 4. The only element related to 4 is 4. Thus

 $[4] = \{4\}$

Accordingly, the following is the partition of *A* induced by *R*:

 $[\{1,5\},\{2,3,6\},\{4\}]$

PARTIAL ORDERINGS

2.18. Let ℓ be any collection of sets. Is the relation of set inclusion \subseteq a partial order on ℓ ?

Yes, since set inclusion is reflexive, antisymmetric, and transitive. That is, for any sets *A*, *B*, *C* in ℓ we have: (i) $A \subseteq A$; (ii) if $A \subseteq B$ and $B \subseteq A$, then A = B; (iii) if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

- **2.19.** Consider the set **Z** of integers. Define *aRb* by $b = a^r$ for some positive integer *r*. Show that *R* is a partial order on **Z**, that is, show that *R* is: (*a*) reflexive; (*b*) antisymmetric; (*c*) transitive.
 - (a) R is reflexive since $a = a^1$.
 - (b) Suppose aRb and bRa, say $b = a^r$ and $a = b^s$. Then $a = (a^r)^s = a^{rs}$. There are three possibilities: (i) rs = 1, (ii) a = 1, and (iii) a = -1. If rs = 1 then r = 1 and s = 1 and so a = b. If a = 1 then $b = 1^r = 1 = a$, and, similarly, if b = 1 then a = 1. Lastly, if a = -1 then b = -1 (since $b \neq 1$) and a = b. In all three cases, a = b. Thus R is antisymmetric.
 - (c) Suppose aRb and bRc say $b = a^r$ and $c = b^s$. Then $c = (a^r)^s = a^{rs}$ and, therefore, aRc. Hence R is transitive.

Accordingly, R is a partial order on Z.

Functions

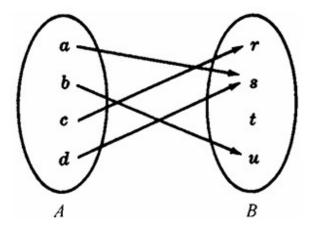


Fig. 3-1

EXAMPLE 3.1

- (a) Consider the function $f(x) = x^3$, i.e., f assigns to each real number its cube. Then the image of 2 is 8, and so we may write f(2) = 8.
- (b) Figure 3-1 defines a function f from $A = \{a, b, c, d\}$ into $B = \{r, s, t, u\}$ in the obvious way. Here

$$f(a) = s$$
, $f(b) = u$, $f(c) = r$, $f(d) = s$

The image of f is the set of image values, $\{r, s, u\}$. Note that t does not belong to the image of f because t is not the image of any element under f.

- (c) Let *A* be any set. The function from *A* into *A* which assigns to each element in *A* the element itself is called the *identity function* on *A* and it is usually denoted by 1_A , or simply 1. In other words, for every $a \in A$,
 - $1_A(a) = a.$

Composition Function

Consider functions $f: A \to B$ and $g: B \to C$; that is, where the codomain of f is the domain of g. Then we may define a new function from A to C, called the *composition* of f and g and written $g \circ f$, as follows:

$$(g \circ f)(a) \equiv g(f(a))$$

3.3 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

A function $f: A \to B$ is said to be *one-to-one* (written 1-1) if different elements in the domain A have distinct images. Another way of saying the same thing is that f is *one-to-one* if f(a) = f(a') implies a = a'.

A function $f: A \to B$ is said to be an *onto* function if each element of B is the image of some element of A. In other words, $f: A \to B$ is onto if the image of f is the entire codomain, i.e., if f(A) = B. In such a case we say that f is a function from A onto B or that f maps A onto B.

A function $f: A \to B$ is *invertible* if its inverse relation f^{-1} is a function from B to A. In general, the inverse relation f^{-1} may not be a function. The following theorem gives simple criteria which tells us when it is.

Theorem 3.1: A function $f: A \rightarrow B$ is invertible if and only if f is both one-to-one and onto.

Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the floor and the ceiling of x. Specifically,

- $\lfloor x \rfloor$, called the *floor* of x, denotes the greatest integer that does not exceed x.
- [x], called the *ceiling* of x, denotes the least integer that is not less than x.

If x is itself an integer, then $\lfloor x \rfloor = \lceil x \rceil$; otherwise $\lfloor x \rfloor + 1 = \lceil x \rceil$. For example,

$$\lfloor 3.14 \rfloor = 3, \quad \lfloor \sqrt{5} \rfloor = 2, \quad \lfloor -8.5 \rfloor = -9, \quad \lfloor 7 \rfloor = 7, \quad \lfloor -4 \rfloor = -4,$$

 $\lceil 3.14 \rceil = 4, \quad \lceil \sqrt{5} \rceil = 3, \quad \lceil -8.5 \rceil = -8, \quad \lceil 7 \rceil = 7, \quad \lceil -4 \rceil = -4$

3.6 RECURSIVELY DEFINED FUNCTIONS

A function is said to be *recursively defined* if the function definition refers to itself. In order for the definition not to be circular, the function definition must have the following two properties:

- (1) There must be certain arguments, called *base values*, for which the function does not refer to itself.
- (2) Each time the function does refer to itself, the argument of the function must be closer to a base value.

A recursive function with these two properties is said to be *well-defined*. The following examples should help clarify these ideas.

Factorial Function

The product of the positive integers from 1 to *n*, inclusive, is called "*n* factorial" and is usually denoted by *n*!. That is,

$$n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$$

Solved Problems

FUNCTIONS

3.1. Let $X = \{1, 2, 3, 4\}$. Determine whether each relation on X is a function from X into X.

- (a) $f = \{(2, 3), (1, 4), (2, 1), (3.2), (4, 4)\}$
- (b) $g = \{(3, 1), (4, 2), (1, 1)\}$
- (c) $h = \{(2, 1), (3, 4), (1, 4), (2, 1), (4, 4)\}$

Recall that a subset f of $X \times X$ is a function $f: X \to X$ if and only if each $a \in X$ appears as the first coordinate in exactly one ordered pair in f.

- (a) No. Two different ordered pairs (2, 3) and (2, 1) in f have the same number 2 as their first coordinate.
- (b) No. The element $2 \in X$ does not appear as the first coordinate in any ordered pair in g.
- (c) Yes. Although $2 \in X$ appears as the first coordinate in two ordered pairs in h, these two ordered pairs are equal.
- **3.3.** Let $A = \{a, b, c\}, B = \{x, y, z\}, C = \{r, s, t\}$. Let $f: A \to B$ and $g: B \to C$ be defined by: $f = \{(a, y)(b, x), (c, y)\}$ and $g = \{(x, s), (y, t), (z, r)\}.$

Find: (a) composition function $g \circ f: A \to C$; (b) $\text{Im}(f), \text{Im}(g), \text{Im}(g \circ f)$.

(a) Use the definition of the composition function to compute:

 $(g \circ f)(a) = g(f(a)) = g(y) = t$ $(g \circ f)(b) = g(f(b)) = g(x) = s$ $(g \circ f)(c) = g(f(c)) = g(y) = t$

That is $g \circ f = \{(a, t), (b, s), (c, t)\}.$

(b) Find the image points (or second coordinates):

$$\operatorname{Im}(f) = \{x, y\}, \quad \operatorname{Im}(g) = \{r, s, t\}, \quad \operatorname{Im}(g \circ f) = \{s, t\}$$

1.25 Prove the following proposition (for $n \ge 0$):

$$P(n): 1 + 2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1$$

P(0) is true since $1 = 2^1 - 1$. Assuming P(k) is true, we add 2^{k+1} to both sides of P(k), obtaining

$$1 + 2 + 2^2 + 2^3 + \dots + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} = 2(2^{k+1}) - 1 = 2^{k+2} - 1$$

which is P(k + 1). That is, P(k + 1) is true whenever P(k) is true. By the principle of induction, P(n) is true for all n.