
SREELA CHANDRAN, AP (AI & CC)

GXEST204

PROGRAMMING IN C

MODULE 1

CO1 : Infer a computational problem and develop C programs from themusing basic constructs

of C language including the control statements.

C Fundamentals - Character Set, Constants, Identifiers, Keywords, Basic Data types, Variables,

Operators and its precedence, Bit-wise operators,Expressions; Statements - Input and Output

statements; Structure of a C program; Simple programs. Control Statements - if, if-else, nested if,

switch, while, do-while, for, break& continue, nested loops.

INTRODUCTION TO C PROGRAMMING

 C is a programming language developed at AT& T’s Bell Laboratories of USA in

1972.

 It was designed and written by Dennis Ritchie.

 C is a procedural oriented programming language. (A task can be divided into a

number of smaller parts called functions).

The C Character Set- A character denotes any alphabet, digit or special symbol used to

represent information.

Tokens: The words formed from the character set are building blocks of C and are sometimes

known as tokens. These tokens represent the individual entity of language.

Examples : Constants, Variables and Keywords

Constants: A constant is an entity that doesn’t change whereas a variable is an entity that

may change.

Variables: a variable is an entity that may change. Variable names are names given to

locations in memory. Variables can store values of any type.

SREELA CHANDRAN, AP (AI & CC)

Rules for Constructing Variable Names

 A variable name is any combination alphabets, digits or underscores.

 The first character in the variable name must be an alphabet or underscore.

 No commas or blanks are allowed within a variable name.

 No special symbol other than an underscore

Eg: a,b,_c,a12etc.

C Keywords

 Keywords are the words whose meaning has already defined for the C compiler.

 The keywords cannot be used as variable names

 Eg: int , float, return, void, break etc

Instructions

Instructions in c are the commands in the program that will instruct c compiler to perform

specific task.

Data types in c: Specifies the type of data to be stored. This determines the type and size of

data associated with variables.

Data types in C can be categorized into 3 types

1. Primitive/Built in/ Pre defined data types

2. Derived data types

3. User defined data types

Primary data types

1. Primitive Data Types: This data type includes- integer data type (int), character data

type, i.e., character or small integer value (char), floating-point data type, i.e.,

containing fractional part (float), and double data type (double), which is the same as

float data type, but it occupies twice the storage space.

 Integer (int)- can store integer value (1, 255…..) allocates 2 or 4 bytes in memory

 Character(char) - char store a char ‘A’ allocates 1 byte in memory

 Float (float) - can store real values 23.56 allocates 4 bytes in memory

 Double (double) - can store real 245.456 allocates 8 bytes in memory

Derived data types

 In c the data types derived from the primitive data types or built in data types are

called derived data types. In other words the derived data types are those data types that are

created by combining primitive and other data types.

There are three derived data types in c

SREELA CHANDRAN, AP (AI & CC)

1. Function

2. Array

3. Pointer

User defined data types

 The data types defined by the user them self are called user defined data types. These

data types are derived from existing data types.

There are 3 types of user defined data types in c. They are

1. Structure

2. Union

3. Enum

Operators in c

An operator is simply a symbol that is used to perform operations. There can be many types

of operations like arithmetic, logical, bitwise, etc.

There are following types of operators to perform different types of operations in C language.

o Arithmetic Operators

o Relational Operators

o Logical Operators

o Bitwise Operators

o Assignment Operator

o Misc Operator

1. Arithmetic operators :-carry out fundamental mathematical operations. The arithmetic

operators in C are as follows:

Addition Operator (+): The addition operator adds two operands together.

Syntax:result = operand1 + operand2;

Subtraction Operator (-): The second operand is subtracted from the first operand via

the subtraction operator.

Syntax: result = operand1 - operand2;

Multiplication Operator (*): This operator is used to multiply the two operands.

Syntax: result = operand1 * operand2;

Division Operator (/): The first operand and the second operand are divided using the

division operator.

Syntax: result = operand1 / operand2;

SREELA CHANDRAN, AP (AI & CC)

Modulus Operator (%): The modulus operator determines the remainder of the

division between two operands.

Syntax: result = operand1 % operand2;

2. Relational Operators:

Relational operators assess the relationship between values by comparing them. They return

either true (1) or false (0). The relational operators in C are as follows:

Equality Operator (==): If two operands are equal, the equality operator verifies this.

Inequality Operator (!=): The inequality operator determines whether two operands

are equal or not.

Greater than Operator (>): The greater than operator determines if the first operand

exceeds the second operand.

Less than Operator (<): The less-than operator determines if the first operand less is than

the second operand.

Greater than or Equal to Operator (>=): The greater than or equal to operator determines

if the first operand is more than or equal to the second operand.

Less than or Equal To Operator (<=): The less than or equal to operator determines if the

first operand must be less than or equal to the second operand.

3. Logical Operators:

Logical operators perform logical operations on boolean values and return either true

(1) or false (0). Here are the logical operators in C:

Logical AND Operator (&&): The logical AND operator returns true if both operands

are true.

Logical OR Operator (||): The logical OR operator returns true if at least one of the

operands is true.

SREELA CHANDRAN, AP (AI & CC)

Logical NOT Operator (!): The logical NOT operator negates the value of the operand.

4. Bitwise Operators:

Bitwise operators perform operations on individual bits of the operands. Here are the bitwise

operators in C:

Bitwise AND Operator (&): The bitwise AND operator performs a bitwise AND

operation on the corresponding bits of the operands.

result = operand1 & operand2;

Eg: unsigned int a = 5; // 0000 0101 in binary

unsigned int b = 3; // 0000 0011 in binary

int result = a & b;

Output

result = 1

Bitwise OR Operator (|): The bitwise OR operator performs a bitwise OR operation on the

corresponding bits of the operands.

Eg: unsigned int a = 5; // 0000 0101 in binary

unsigned int b = 3; // 0000 0011 in binary

int result = a | b;

Output

result = 7

Bitwise XOR Operator (^): The bitwise XOR operator performs a bitwise exclusive OR

operation on the corresponding bits of the operands.

Eg: unsigned int a = 5; // 0000 0101 in binary

unsigned int b = 3; // 0000 0011 in binary

int result = a ^ b;

Output

result = 6

Bitwise NOT Operator (~): The bitwise NOT operator flips each bit of the operand.

Eg:- unsigned int a = 5; // 0000 0101 in binary

int result = ~a;

Output

result = - 6

5. Assignment Operator:

SREELA CHANDRAN, AP (AI & CC)

Assignment operators are used to assign values to variables. Here is some of the assignment

operator in C:

Simple Assignment Operator (=): The simple assignment operator assigns the value from

the right side operands to the left side operands.

6. Miscellaneous Operator:

The sizeof operator and the ternary operator fall under the miscellaneous operator category.

sizeof is one of the mostly used operator in the C. It is a compile-time unary operator which

can be used to compute the size of its operand

Syntax:sizeof(Expression);

The conditional operator in C is kind of similar to the if-else statement as it follows the

same algorithm as of if-else statement but the conditional operator takes less space and helps

to write the if-else statements in the shortest way possible. It is also known as the ternary

operator in C as it operates on three operands.

SREELA CHANDRAN, AP (AI & CC)

Syntax:- variable = (condition) ? Expression2 : Expression3

 Step 1: Expression1 is the condition to be evaluated.

 Step 2A: If the condition(Expression1) is True then Expression2 will be executed.

 Step 2B: If the condition(Expression1) is false then Expression3 will be executed.

 Step 3: Results will be returned.

The precedence of operators determines which operator is executed first if there is more than

one operator in an expression.

.

The associativity of operators determines the direction in which an expression is evaluated

INPUT AND OUTPUT FUNCTIONS IN C

Input and output functions are available in the C language to perform the most common tasks.

In every C program, three basic functions take place – accepting of data as input, the

processing of data, and the generation of output. In C, input refers to providing it with some

information or data to be utilised in the program. On the other hand, output refers to writing

SREELA CHANDRAN, AP (AI & CC)

the data and information on any printer file and displaying it on the screen. There are mainly

two types of these functions available in the C language:

Formatted

The formatted functions basically present or accept the available data (input) in a specific

format. The standard library in C contains various functions for the input-output operations.

The scanf() and printf() out of these functions help a programmer format the functions in

their desired format

Unformatted

The unformatted functions are not capable of controlling the format that is involved in

writing and reading the available data.

The unformatted input-output functions further have two categories:

 The character functions

 The string functions

We use the character input functions for reading only a single character from the input device

(the keyboard). On the other hand, we use the character output functions for writing just a

single character on the output source (the screen). Here, the getchar() refers to the input

functions of unformatted type, while the putchar() refers to the output functions of

unformatted type.

In any programming language, the character array or string refers to the collection of various

characters. The puts() and gets() are the most commonly used ones for reading and writing

strings. Here, the gets() refers to the input function used for reading the string characters

while the puts() refers to the output function used for writing the string characters (in

unformatted forms).

STRUCTURE OF A C PROGRAM

The basic structure of a C program is divided into 6 parts which makes it easy to read,

modify, document, and understand in a particular format.

1. Documentation

2. Pre-processor Section

3. Definition

4. Global Declaration

SREELA CHANDRAN, AP (AI & CC)

5. main ()

6. Sub Programs

Documentation section

It includes the statement specified at the beginning of a program, such as a program's name, date,

description, and title. It is represented as:

//name of a program

Or

/*

Overview of the code

*/

.
Both methods work as the document section in a program. It provides an overview of the

program. Anything written inside will be considered a part of the documentation section and will

not interfere with the specified code.

Preprocessor section

The preprocessor section contains all the header files used in a program. It informs the system to

link the header files to the system libraries. It is given b

#include<stdio.h>

#include<conio.h>
The #include statement includes the specific file as a part of a function at the time of the

compilation. Thus, the contents of the included file are compiled along with the function being

compiled. The #include<stdio.h> consists of the contents of the standard input output files,

which contains the definition of stdin, stdout, and stderr. Whenever the definitions stdin, stdout,

and stderr are used in a function, the statement #include<stdio.h> need to be used.

There are various header files available for different purposes. For example, # include

<math.h>. It is used for mathematic functions in a program.

Define section

The define section comprises of different constants declared using the define keyword. It is given

by:

#define a = 2

Global declaration

The global section comprises of all the global declarations in the program. It is given by:

SREELA CHANDRAN, AP (AI & CC)

float num = 2.54;

 int a = 5;

char ch ='z';

We can also declare user defined functions in the global variable section.

Main function

main() is the first function to be executed by the computer. It is necessary for a code to include

the main(). It is like any other function available in the C library. Parenthesis () are used for

passing parameters (if any) to a function.

The main function is declared as:

main()

We can also use int or main with the main (). The void main() specifies that the program will

not return any value. The int main() specifies that the program can return integer type data.

int main()

Or

void main()

Main function is further categorized into local declarations, statements, and expressions.

Local declarations

The variable that is declared inside a given function or block refers to as local declarations.

Statements

The statements refers to if, else, while, do, for, etc. used in a program within the main function.

Expressions

An expression is a type of formula where operands are linked with each other by the use of

operators. It is given by:

a - b;

a +b;

User defined functions

The user defined functions specified the functions specified as per the requirements of the user.

For example, color(), sum(), division(), etc.

The program (basic or advance) follows the same sections as listed above.

SREELA CHANDRAN, AP (AI & CC)

Return function is generally the last section of a code. But, it is not necessary to include. It is

used when we want to return a value. The return function returns a value when the return type

other than the void is specified with the function.

Return type ends the execution of the function. It further returns control to the specified calling

function. It is given by:

return;

Or

return expression ;

Example 1: To find the sum of two numbers given by the user

It is given by:

/* Sum of two numbers */

#include<stdio.h>

int main()

{

int a, b, sum;

printf("Enter two numbers to be added ");

 scanf("%d %d", &a, &b);

 // calculating sum

 sum = a + b;

 printf("%d + %d = %d", a, b, sum);

 return 0; // return the integer value in the sum

}

CONTROL STATEMENTS OR CONTROL STRUCTURES

 Control statements enable us to specify the flow of program control- ie the order in which

the instructions in a program must be executed.

 They make it possible to make decisions, to perform tasks repeatedly or to jump from one

section of code to another.

There are three types of control structures.

1. Sequential statements.

2. Branching statements (Selection structures)

3. Looping statements (Repetition structures)

Branching statements -Used to make certain decisions and based on decision the next

instructions to be executed can be selected.

 C programming provides the following conditional statements(branching statements)

1. Simple if

2. If else

SREELA CHANDRAN, AP (AI & CC)

3. Nested if

4. Else if ladder

5. Switch statement

1. Simple if

Use the if statement to specify a block of code to be executed if a condition is true.

Syntax:-if (condition)

{

 // block of code to be executed if the condition is true;

}

Eg:-if (20 > 18)

 {

 printf("20 is greater than 18");

}

2. If else

if the condition is true its body part is executed. Otherwise the else part is executed.

Syntax:- if(condition)

 {

 Block of statements;

}

 else

{

Block of statements;

 }

Eg:-int time= 20;

if (time< 18)

{

 printf("Good day.");

}

else

{

 printf("Good evening.");

}

3. Nested if

SREELA CHANDRAN, AP (AI & CC)

When a series of decision is required, nested if-else is used. Nesting means using one if-else

construct within another one.

Syntax:- if(condition 1)

 {

 If(condition 2)

 {

 Block 1;

 }

 Else

 {

 Block 2;

 }

 }

 Else

 {

 Block 3;

 }

4. Else if ladder

Else if ladder is used to select multipath decisions.

Syntax:-

if(condition 1>

{

 Statement Block 1;

 Else if(condition 2)

 {

 Statement Block 2;

 }

 Else

 {

 Statement Block 3;

 }

SREELA CHANDRAN, AP (AI & CC)

}

5. Switch case

Instead of writing many if..else statements, we can use the switch statement.

The switch statement selects one of many code blocks to be executed:

Syntax:

switch(condition)

{

 case value1:

 statements;

 break;

 case value2:

 statements;

break;

 default:

statements;

}

Looping statements(Repetition structures)

A loop statement allows us to execute a statement or group of statements multiple times. Given below

is the general form of a loop statement in most of the programming languages

SREELA CHANDRAN, AP (AI & CC)

A loop in C consists of two parts, a body of a loop and a control statement. The control

statement is a combination of some conditions that direct the body of the loop to execute until

the specified condition becomes false.

Depending upon the position of a control statement in a program, looping statement in C is

classified into two types:

1. Entry controlled loop

2. Exit controlled loop

In an entry control loop in C, a condition is checked before executing the body of a loop. It

is also called as a pre-checking loop.

In an exit controlled loop, a condition is checked after executing the body of a loop. It is also

called as a post-checking loop.

C programming language provides us with three types of loop constructs:

1. The while loop

2. The do-while loop

3. The for loop

1. While Loop

It is an entry-controlled loop

In while loop, a condition is evaluated before processing a body of the loop. If a condition is

true then and only then the body of a loop is executed. After exiting the loop, the control goes

to the statements which are immediately after the loop. The body of a loop can contain more

than one statement. If it contains only one statement, then the curly braces are not

compulsory.

Syntax:

While(condition)

{

 Body of the loop;

}

2. Do-While Loop

It is an exit-controlled loop.

SREELA CHANDRAN, AP (AI & CC)

In the do-while loop, the body of a loop is always executed at least once. After the body is

executed, then it checks the condition. If the condition is true, then it will again execute the

body of a loop otherwise control is transferred out of the loop.

Syntax:-

do

{

 Statements;

} while (condition);

3. For Loop

A for loop is a more efficient loop structure in ‘C’ programming. The general structure of for

loop syntax in C is as follows:

for (initial value; condition; incrementation or decrementation)

{

 statements;

}

The initial value of the for loop is performed only once. The condition is a Boolean

expression that tests and compares the counter to a fixed value after each iteration, stopping

the for loop when false is returned. The incrementation/decrementation increases (or

decreases) the counter by a set value.

	2. Relational Operators:
	3. Logical Operators:
	4. Bitwise Operators:
	5. Assignment Operator:
	6. Miscellaneous Operator:
	Input and output functions are available in the C language to perform the most common tasks. In every C program, three basic functions take place – accepting of data as input, the processing of data, and the generation of output. In C, input refers to...
	Formatted
	Unformatted
	Documentation section
	Preprocessor section
	Define section
	Global declaration
	Main function
	Local declarations
	User defined functions

