

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B.Tech 2024

FIRST YEAR SYLLABUS (GROUP B)

SEMESTER 1 GROUP B

SEMESTER S1

COURSE NAME: MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1 (Common to Groups B & C)

Course Code	GYMAT101	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

To provide a comprehensive understanding and basic techniques of matrix theory to analyze linear systems and to provide advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms, and understanding Fourier series, enabling them to analyze and model dynamic systems come across in engineering disciplines effectively.

Mod No	Syllabus Description	Contact Hours
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear Independence: rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix Eigen Value Problem, Determining Eigen values and Eigen vector, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9

2	Homogeneous linear ODEs of second order, Superposition principle, General solution, Homogeneous linear ODEs of second order with constant coefficients (Method to find general solution, solution of linear Initial Value Problem). Non homogeneous ODEs (with constant	
	coefficients) - General solution, Particular solution by the method of undetermined coefficients (Particular solutions for the functions $ke^{\gamma x}$, kx^n , $kcos\omega x$, $ksin\omega x$, $ke^{\alpha x}cos\omega x$, $ke^{\alpha x}sin\omega x$), Initial value Problem for Non-Homogeneous Second order linear ODE(with constant coefficients), Solution by variation of parameters (Second Order). (Text 1: Relevant topics from sections 2.1, 2.2, 2.7, 2.10)	9
	Laplace Transform, Inverse Laplace Transform, Linearity property, First	
3	shifting theorem, Transform of derivatives, Solution of Initial value problems by Laplace transform (Second order linear ODE with constant coefficients with initial conditions at t=0 only), Unit step function, Second shifting theorem, Dirac delta function and its transform (Initial value problems involving unit step function and Dirac delta function are excluded), Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions. (Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	9
4	Taylor series representation (without proof, assuming the possibility of power series expansion in appropriate domains), Maclaurin series representation, Fourier series, Euler formulas, Convergence of Fourier series (Dirichlet's conditions), Fourier series of 2π periodic functions, Fourier series of 2 <i>l</i> periodic functions, Half range sine series expansion, Half range cosine series expansion. (Text 1: Relevant topics from sections 11.1, 11.2, Text 2: Relevant topics from section 10.8)	9

Course Assessment Method (CIE: 40 marks , ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each	
 Total of 8 Questions, 	module, out of which 1 question should be	
each carrying 3 marks	answered.	60
	• Each question can have a maximum of 3	
(8x3 =24marks)	sub divisions.	
(OAS Z-HIMIKS)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Solve systems of linear equations and diagonalize matrices.	К3
CO2	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients.	К3
СОЗ	Compute Laplace transform and apply it to solve ODEs arising in engineering.	К3
CO4	Determine the Taylor series and evaluate Fourier series expansion for different periodic functions.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			
2	Calculus	H.Anton,I.Biven,S.Davis	Wiley	12 th edition, 2024			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023		
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017		
3	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019		
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021		
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023		
6	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024		
7	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/111/107/111107164/			
2	https://archive.nptel.ac.in/courses/111/104/111104031/			
3	https://archive.nptel.ac.in/courses/111/106/111106139/			
4	https://archive.nptel.ac.in/courses/111/101/111101164/			

SEMESTER S1/S2

COURSE NAME: PHYSICS FOR ELECTRICAL SCIENCE

(Common to Group B)

Course Code	GBPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students a solid background in the fundamentals of Physics and to impart that knowledge in Electrical Science disciplines. The course is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes.
- **2.** To make the students gain practical knowledge to correlate the theoretical studies and to develop practical applications of engineering.

Module No.	Syllabus Description	
1	Semiconductor Physics Intrinsic semiconductor, Derivation of density of electrons in conduction band and density of holes in valence band, Intrinsic carrier concentration, Variation of Intrinsic carrier concentration with temperature, Extrinsic semiconductor (qualitative) Formation of p-n junction, Fermi level in semiconductors-intrinsic and extrinsic, Energy band diagram of p-n junction - Qualitative description of charge flow across a p-n junction - Forward and reverse biased p-n junctions, Diode equation (Derivation), V-I Characteristics of p-n junction	9

	Semiconductor Devices				
	Semiconductor devices - Rectifiers- Full wave and Half wave, Zener				
	diode - V-I characteristics - Zener breakdown and Avalanche breakdown,				
2	Tunnel diode - V-I characteristics, Applications of Zener and Tunnel				
	diodes.	9			
	Photonic devices (qualitative) - Photo detectors (Junction and PIN				
	photodiodes), Applications, Solar cells- V-I Characteristics, Efficiency,				
	Stringing of Solar cells to solar panel, Light Emitting Diode, Applications				
	of LED				
	Superconductivity & Dielectrics				
	Super conductivity, Transition temperature, Critical field, Meissner				
	effect, Type I and Type II Super conductors, Applications of				
_	superconductors.				
3	Dielectric constant, Polarization, Permittivity- relative permittivity,	9			
	Relation between polarization and dielectric constant, Types of				
	Polarization, Internal fields in liquids and solids, Clausius Mossotti				
	Relation, Dielectric loss (qualitative), Dielectric breakdown (qualitative)				
	Laser & Fiber Optics				
	Optical processes - Absorption, Spontaneous emission and stimulated				
	emission, Properties of laser, Principle of laser - conditions for sustained				
	lasing - Population inversion, Pumping, Metastable states, Basic				
	components of laser - Active medium- Optical resonant cavity,	•			
4	Construction and working of Ruby laser, Semiconductor Laser	9			
	(Qualitative), Applications of laser.				
	Optical fibre-Principle of propagation of light, Types of fibres-Step index				
	and Graded index fibres, Numerical aperture -Derivation, Applications of				
	optical fibres - Fibre optic communication system (block diagram)				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the fundamentals of Semiconductor Physics.	K2				
CO2	Describe the behaviour of semiconductor materials in semiconductor devices.	K2				
CO3	Explain Superconductivity and basic theory of dielectrics	K2				
CO4	Apply the comprehended knowledge about laser and fibre optics in various engineering applications	K3				
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	K3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	2										3
CO5	3	2			3				2			3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003				
2	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017				
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995				
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002				
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010				
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022				
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019				
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017				
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016				

	Video Links (NPTEL, SWAYAM etc)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/108106181						
2	https://nptel.ac.in/courses/108108112						
3	https://nptel.ac.in/courses/115103108						
4	https://nptel.ac.in/courses/115102124						

1. Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

 Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List (Minimum 10 Experiments)

Experiment No.	Experiment
1	Diode characteristics
2	Zener diode- V-I characteristics
3	Tunnel diode –V-I characteristics
4	Half wave rectifier
5	Full wave rectifier
6	Hall effect in semiconductors
7	Determination of band gap energy of a semiconductor
8	Characteristics of LED
9	Solar Cell- V-I and Intensity Characteristics

10	Laser – Determination of wavelength using diffraction grating
11	Laser- To measure the wavelength using a millimetre scale as a grating
12	Compare the variation of current with potential difference, for a metal, filament bulb and semiconductor diode.
13	Determination of dielectric constant
14	CRO -Measurement of frequency and amplitude of wave forms
15	Photo diode- V-I Characteristics
16	Numerical aperture of optical fiber

SEMESTER S1/S2

COURSE NAME: CHEMISTRY FOR INFORMATION SCIENCE & ELECTRICAL SCIENCE (GROUPS A & B)

Course Code	GXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- 2. Additionally, to familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues such as climate change, pollution, and waste management, which impact quality of life.

Module No.	Syllabus Description	Contact Hours
	Electrochemistry and Corrosion Science (9 Hours)	
	Electrochemical Cell- Electrode potential- Nernst equation for single	
	electrode and cell (Numerical problems)- Reference electrodes - SHE &	
	Calomel electrode -Construction and Working - Electrochemical series -	
	Applications - Glass Electrode & pH Measurement-Conductivity-	
1	Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel	
	cell (acid electrolyte only) construction and working.	9
	Corrosion -Electrochemical corrosion mechanism (acidic & alkaline	
	medium) - Galvanic series - Corrosion control methods - Cathodic Protection	
	- Sacrificial anodic protection and impressed current cathodic protection -	
	Electroplating of copper - Electroless plating of copper.	

	Materials for Electronic Applications (9 Hrs)	
	Nanomaterials - Classification based on Dimension & Materials-	
	Synthesis – Sol gel & Chemical Reduction - Applications of nanomaterials	
	- Carbon Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots -	
	structure, properties & application.	
	Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated	
2	polymers (Examples only)- Conducting Polymers-Classification-	9
	Polyaniline & Polypyrrole-synthesis, properties and applications.	
	Organic electronic materials and devices- construction, working and	
	applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized	
	Solar Cells (DSSC)	
	Materials used in Quantum computing Technology, Super capacitors,	
	Spintronics	
	Molecular Spectroscopy and Analytical Techniques (9 Hours)	
	Spectroscopy -Types of spectra- Molecular energy levels - Beer Lambert's	
	law - Numerical problems - Electronic Spectroscopy - Principle, Types of	
	electronic transitions -Role of conjugation in absorption maxima-	
	Instrumentation-Applications - Vibrational spectroscopy - Principle-	
3	Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O -	9
	Applications	
	Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-	
	Working and Application.	
	Electron Microscopic Techniques: SEM - Principle, instrumentation and	
	Applications.	
	Environmental Chemistry (9Hrs)	
	Water characteristics - Hardness - Types of hardness- Temporary and	
	Permanent - Disadvantages of hard water -Degree of hardness (Numericals)	
4	Water softening methods-Ion exchange process- Principle, procedure and	9
,	advantages. Reverse osmosis – principle, process and advantages. – Water	,
	disinfection methods – chlorination-Break point chlorination, ozone and UV	
	irradiation. Dissolved oxygen (DO), BOD and COD- Definition &	
	Significance.	

Waste Management: Sewage water treatment- Primary, Secondary and	
Tertiary - Flow diagram -Trickling filter and UASB process. E Waste,	
Methods of disposal - recycle, recovery and reuse. Chemistry of climate	
change- Greenhouse Gases- Ozone Depletion-Sustainable Development- an	
introduction to Sustainable Development Goals.	

Self-Study Topics (NOT TO BE INCLUDED FOR END SEMESTER EXAMINATION): Construction, working and applications of Lead acid battery, Nickel cadmium battery and Nickel metal hydrid battery.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the Basic Concepts of Electrochemistry and Corrosion to explore the possible applications in various engineering fields	K2				
CO2	Describe the use of various engineering materials in different industries	K2				
CO3	Use appropriate analytical techniques for synthesis and characterisation of different engineering materials	К3				
CO4	Outline various water treatment and waste management methods	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018			
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition-2018			
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005			
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995			
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017			
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015			
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996			
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014			
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024			
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
	https://archive.nptel.ac.in/courses/104/106/104106137/				
	https://archive.nptel.ac.in/courses/113/105/113105102/				
1	https://archive.nptel.ac.in/courses/113/104/113104082/				
	https://www.youtube.com/watch?v=BeSxFLvk1h0				
	https://archive.nptel.ac.in/courses/113/104/113104102/				
2	https://archive.nptel.ac.in/courses/104/105/104105124/				
	https://archive.nptel.ac.in/courses/105/104/105104157/				

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

*Minimum 10 Experiments

-
Experiment
Estimation of iron in iron ore
Estimation of copper in brass
Determination of cell constant and conductance of solutions
Calibration of pH meter and determination of pH of a solution
Synthesis of polymers (a) Urea-formaldehyde resin
(b) Phenol-formaldehyde resin
Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in solution
Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food colorant)
Analysis of IR spectra
Identification of drugs using TLC

10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S1

COURSE NAME: ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

(Common to A, B & D)

Course Code	GMEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. Learn dimensioning and preparation of drawings
- 2. Learn to interpret engineering drawings
- 3. Learn the features of CAD software

Module No.	Syllabus Description						
1	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination) Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of a line. Inclination of lines with reference planes. True length and true inclinations of line inclined to both the reference planes.	Hours 9					

2	Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder only. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.	9
3	Sections of Solids: Sections of Prisms, Pyramids, Cone and Cylinder only, with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems) Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes. (Exclude problems with through holes)	9
4	Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Sphere, Hemisphere and their combinations. Computer Aided Drawing (CAD): Introduction, Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitable software. (CAD, only internal evaluation)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment+ Lab Exam	Internal Examination-1	Internal Examination- 2	Total
5	10+5	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Total
2 Questions from one module.	
Total 8 Questions, each question carries 15 marks	60
(15x4 = 60 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the projection of points and lines located in different quadrants	K2
CO2	Prepare multiview orthographic projections of objects by visualizing them in different positions	К3
CO3	Plot sectional views and develop surfaces of a given object	К3
CO4	Prepare pictorial drawings using the principles of isometric projection	К3
CO5	Sketch simple drawing using cad tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2	2		3							

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Graphics	Varghese, P. I.	V I P Publishers					
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers					
3	Engineering Graphics	John, K. C.	Prentice Hall India Publishers					
4	Engineering Drawing,	Bhatt, N., D.	Charotar Publishing House Pvt Ltd.					
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.,	Prentice Hall India Publishers					
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers					
3	Engineering Drawing	Parthasarathy, N. S., and Murali, V.	Oxford University Press					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/112/102/112102304/					
2	https://archive.nptel.ac.in/courses/112/102/112102304/					
3	https://archive.nptel.ac.in/courses/112/102/112102304/					
4	https://archive.nptel.ac.in/courses/112/102/112102304/					

SEMESTER S1

COURSE NAME: INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Group A & B)

Course Code	GXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- 2. Classify series and parallel magnetic circuits
- 3. Analyse three phase AC systems
- 4. Describe the fundamental concepts of electronic components and devices
- 5. Outline the principles of communication systems
- 6. Identify various applications of modern electronics in the contemporary world

Module No.	Syllabus Description	Contact Hours
	Elementary concepts of DC electric circuits:	
	Current and Voltage Division Rule - Relative potential	
	Capacitors & Inductors: V-I relations and Energy stored.	
1	Ohms Law and Kirchhoff's laws - numerical problems.	11
	Star-delta conversion (resistive networks only - derivation not	
	required) - numerical problems.	
	Analysis of DC Electric circuits: Mesh current method - matrix	

	representation - Solution of network equations.	
	Node voltage methods-matrix representation-solution of network	
	equations by matrix methods - numerical problems.	
	Elementary Concepts of Magnetic circuits:	
	Magnetic Circuits: Basic Terminology: MMF, field strength, flux	
	density, reluctance - Comparison between electric and magnetic	
	circuits - Series and parallel magnetic circuits with composite	
	materials (numerical problems not needed)	
	Electromagnetic Induction: Faraday's laws, Lenz's law- statically induced and dynamically	
	induced emf – Self-inductance and mutual inductance, coefficient of	
	coupling (numerical problems not needed)	
	Alternating Current fundamentals:	
	Generation of alternating voltages - Representation of sinusoidal	
	waveforms: frequency, period, average value, RMS value and form	
	factor - numerical problems	
	AC Circuits: Phasor representation of sinusoidal quantities,	
2	Trigonometric, Rectangular, Polar and complex forms.	11
	Analysis of simple AC circuits: Purely resistive, inductive &	
	capacitive circuits; Inductive and capacitive reactance, concept of	
	impedance - numerical problems.	
	RL, RC and RLC series circuits- power factor, active, reactive and	
	apparent power. Simple numerical problems.	
	Three phase AC systems: Generation of three phase voltages,	
	advantages of three phase systems, star and delta connections	
	(balanced only), relation between line and phase voltages, line and	
	phase currents- numerical problems	
	Introduction to Electronic devices:	
3	Passive and active components in electronics	13
	Working of PN junction diode, V-I characteristics of PN Junction	

	diode	
	Zener diode and avalanche breakdown. Basics of Zener voltage	
	regulator	
	Block diagram of DC power supply, circuit and working of half	
	wave, full wave and bridge rectifiers, ripple factor (with and	
	without capacitor filters)	
	Construction, working and V-I Characteristics of BJT,	
	Input output characteristics of CE configuration, Comparison of	
	CE, CB and CC configurations	
	Concept of biasing and load line	
	Transistor as a switch, Transistor as an amplifier (Circuit Diagram	
	and working)	
	RC coupled amplifier - Circuit diagram and frequency response	
	Introduction to FET, Construction and working of N-channel and P-	
	Channel MOSFETs	
	Modern Electronics and its applications:	
	General block diagram of a Communication system, Block diagram	
	of Fiber optic Communication system	
	Concept of AM and FM (No derivation required), Block diagram of	
	AM and FM super-heterodyne receiver	
	Basic concepts of Wired and Wireless communication, Block	
4	diagram of GSM	9
	Comparison of 3G, 4G, 5G and 6G communication technologies	
	Block diagrams of Electronic instrumentation system, Digital	
	Multimeter, Function generator	
	Introduction to CRO and Lissajous patterns	
	Applications of modern electronics - IoT based smart homes,	
	healthcare and agriculture (Case study only)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits	K2
CO2	Classify series and parallel magnetic circuits	K2
CO3	Analyse three phase AC systems	K2
CO4	Describe the fundamental concepts of electronic components and devices	K2
CO5	Outline the principles of communication systems	K2
CO6	Identify various applications of modern electronics in the contemporary world	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2											2
CO3	3	2										2
CO4	2	1										2
CO5	2											2
CO6	3		1			3	1					2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019				
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010				
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018				
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020				
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015				
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017				
7	Electronic Communication SYstems	Kennedy and Davis	McGraw Hill	6/e 2017				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008			

SEMESTER S1

COURSE NAME: ALGORITHMIC THINKING WITH PYTHON

(Common to All Branches)

Course Code	UCEST105	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Provide a comprehensive understanding of algorithmic thinking and its practical applications.
- 2. Explore algorithmic paradigms including brute force, divide-and-conquer, dynamic programming and heuristics in solving complex problems.

Module No.	Syllabus Description	Contact Hours
	PROBLEM-SOLVING STRATEGIES:- Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking (Working backward).	
1	THE PROBLEM-SOLVING PROCESS:- Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution.	7
	ESSENTIALS OF PYTHON PROGRAMMING:- Creating and using variables in Python, Numeric and String data types in Python, Using the math module, Using the Python Standard Library for handling basic I/O - print, input, Python operators and their precedence.	

	ALGORITHM AND PSEUDOCODE REPRESENTATION:- Meaning and Definition of Pseudocode, Reasons for using pseudocode, The main constructs of pseudocode - Sequencing, selection (if-else structure, case structure) and repetition (for, while, repeatuntil loops), Sample problems*	
	FLOWCHARTS** :- Symbols used in creating a Flowchart - start and end, arithmetic calculations, input/output operation, decision (selection), module name (call), for loop (Hexagon), flow-lines, on-page connector, off-page connector.	
2	* - Evaluate an expression, d=a+b*c, find simple interest, determine the larger of two numbers, determine the smallest of three numbers, determine the grade earned by a student based on KTU grade scale (using if-else and case structures), print the numbers from 1 to 50 in descending order, find the sum of n numbers input by the user (using all the three loop variants), factorial of a number, largest of n numbers (Not to be limited to these exercises. More can be worked out if time permits). ** Only for visualizing the control flow of Algorithms. The use of tools like RAPTOR (https://raptor.martincarlisle.com/) is suggested. Flowcharts for the sample problems listed earlier may be discussed	9
3	SELECTION AND ITERATION USING PYTHON:- if-else, elif, for loop, range, while loop. Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using Arrays in Python (using Numpy library). DECOMPOSITION AND MODULARISATION*:- Problem decomposition as a strategy for solving complex problems, Modularisation, Motivation for modularisation, Defining and using functions in Python, Functions with multiple return values RECURSION:- Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion and the Stack, Avoiding Circularity in Recursion, Sample problems - Finding the nth Fibonacci number, greatest common divisor of two positive integers, the factorial of a positive integer, adding two positive integers, the sum of digits of a	10

	positive number **.				
	* The idea should be introduced and demonstrated using Merge sort, the problem of				
	returning the top three integers from a list of n>=3 integers as examples. (Not to be limited to these two exercises. More can be worked out if time permits).				
	** Not to be limited to these exercises. More can be worked out if time permits.				
	COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING(Introductory				
	diagrammatic/algorithmic explanations only. Analysis not required) :-				
	Brute-force Approach -				
	- Example: Padlock, Password guessing				
	Divide-and-conquer Approach -				
	 Example: The Merge Sort Algorithm Advantages of Divide and Conquer Approach 				
	- Disadvantages of Divide and Conquer Approach				
	Dynamic Programming Approach				
	- Example: Fibonacci series				
	- Recursion vs Dynamic Programming				
4	Greedy Algorithm Approach	10			
	- Example: Given an array of positive integers each indicating the completion time				
	for a task, find the maximum number of tasks that can be completed in the limited				
	amount of time that you have.				
	- Motivations for the Greedy Approach				
	- Characteristics of the Greedy Algorithm				
	- Greedy Algorithms vs Dynamic Programming				
	Randomized Approach				
	- Example 1: A company selling jeans gives a coupon for each pair of jeans. There				
	are n different coupons. Collecting $oldsymbol{n}$ different coupons would give you free jeans.				
	How many jeans do you expect to buy before getting a free one?				
	- Example 2: n people go to a party and drop off their hats to a hat-check person.				

When the party is over, a different hat-check person is on duty and returns the **n** hats randomly back to each person. What is the expected number of people who get back their hats?

Motivations for the Randomized Approach

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment (Accurate Execution of Programming Tasks)	Internal Examination-1 (Written Examination)	Internal Examination-2 (Written Examination)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Explore the role of a computer as a model of computation in solving real-world problems.	К2		
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	К3		
CO3	Use effective algorithms to solve formulated models and translate algorithms into executable programs.	К3		
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	К2		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Problem solving & programming concepts	Maureen Sprankle, Jim Hubbard	Pearson	2012				
2	How to Solve It: A New Aspect of Mathematical Method	George Pólya	Princeton University Press	2015				
3	Creative Problem Solving: An Introduction	Donald Treffinger., Scott Isaksen, Brian Stead-Doval	Prufrock Press	2005				

4	Psychology (Sec Problem Solving.)	Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., & Perlmutter, M	H5P Edition	2021
5	Computer Arithmetic Algorithms	Koren, Israel	AK Peters/CRC Press	2018
6	Introduction to Computation and Programming using Python	Guttag John V	PHI	2/e., 2016
7	Python for Everyone	Cay S. Horstmann, Rance D. Necaise	Wiley	3/e, 2024
8	Computational Thinking: A Primer for Programmers and Data Scientists	G Venkatesh Madhavan Mukund	Mylspot Education Services Pvt Ltd	2020

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/					
2	https://onlinecourses.nptel.ac.in/noc21_cs32/preview					

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify ill-defined problem and well-defined problems
- 2. How do you differentiate the methods for solving algorithmic problems: introspection, simulation, computer modelling, and experimentation?
- 3. Use cases for Trial and error, Algorithm, Heuristic and Means-ends analysis can be applied in proffering solution to problems
- 4. Use a diagram to describe the application of Tower of Hanoi in choosing and analysing an action at a series of smaller steps to move closer to the goal
- 5. What effect will be generated if the stage that involves program writing is not observed in the problem solving process?
- 6. What effect will be generated if the stage that involves program writing is not observed in the problem solving process?
- 7. Evaluate different algorithms based on their efficiency by counting the number of steps.
- 8. Recursive function that takes a number and returns the sum of all the numbers from zero to that number.
- 9. Recursive function that takes a number as an input and returns the factorial of that number.
- 10. Recursive function that takes a number 'n' and returns the nth number of the Fibonacci number.
- 11. Recursive function that takes an array of numbers as an input and returns the product of all the numbers in the list.

LAB Experiments:

- 1. Demonstrate about Basics of Python Programming
- 2. Demonstrate about fundamental Data types in Python Programming. (i.e., int, float, complex, bool and string types)
- 3. Demonstrate different Arithmetic Operations on numbers in Python.
- 4. Create, concatenate, and print a string and access a sub-string from a given string.
- 5. Familiarize time and date in various formats (Eg. "Sun May 29 02:26:23 IST 2017")

- 6. Write a program to create, append, and remove lists in Python using numPy.
- 7. Programs to find the largest of three numbers.
- 8. Convert temperatures to and from Celsius, and Fahrenheit. [Formula: c/5 = f-32/9]
- 9. Program to construct the stars(*) pattern, using a nested for loop
- 10. Program that prints prime numbers less than 20.
- 11. Program to find the factorial of a number using Recursion.
- 12. Recursive function to add two positive numbers.
- 13. Recursive function to multiply two positive numbers
- 14. Recursive function to the greatest common divisor of two positive numbers.
- 15. Program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.
- 16. Program to define a module to find Fibonacci Numbers and import the module to another program.
- 17. Program to define a module and import a specific function in that module to another program.
- 18. Program to check whether the given number is a valid mobile number or not using functions? Rules:
 - 1. Every number should contain exactly 10 digits.
 - 2. The first digit should be 7 or 8 or 9

SEMESTER S1/S2

COURSE NAME: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

(Common to All Groups except for Civil Engineering Branch)

Course Code	GXESL106	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs 30 mins
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Demonstrate safety measures against electrical shocks
- 2. Develop familiarity with transformers, rheostats, batteries and earthing schemes
- 3. Develop the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits
- 4. Identify various electronic components
- 5. Operate various measuring instruments
- 6. Design simple electronic circuits on breadboard and PCB
- 7. Build the ability to work in a team with good interpersonal skills.

Expt.	Experiments
No.	(Minimum of 7 Experiments to be done)
1	a) Demonstrate the precautionary steps adopted in case of Electrical shocks.b) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and
	MCCB, familiarise the ratings.
2	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a 6A plug socket with individual control.
3	Wiring of light/fan circuit using two way switches. (Staircase wiring)

4	Wiring of fluorescent lamp and a power plug (16 A) socket with a control switch.
_	Wiring of power distribution arrangement using single phase MCB distribution board
5	with ELCB, main switch and Energy meter.
	Familiarisation of step up and step down transformers, (use low voltage transformers)
6	Measurement and representation of voltage and waveform to scale in graph sheet with the
	help of CRO
	Familiarisation of rheostats, measurement of potential across resistance elements and
7	introducing the concept of relative potential using a DC circuit.
	a)Identify battery specifications using different types of batteries.(Lead acid, Li Ion,
	NiCd etc.)
8	b) Familiarize different types of earthing (Pipe, Plate Earthing, Mat Schemes) and
	ground enhancing materials (GEM).
	ELECTRONICS WORKSHOP (Minimum of 7 Experiments to be done)
	Familiarization/Identification of electronic components with specification (Functionality,
	type, size, colour coding, package, symbol and cost of -Active, Passive, Electrical,
1	Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays,
	Crystals, Displays, Fasteners, Heat sink etc.)
	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data sheets of
2	discrete components and IC's
	Familiarization/Application of testing instruments and commonly used tools Multimeter,
	Function generator, Power supply, CRO, DSO.
3	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers,
	Crimping tool, Hot air soldering and de- soldering station
_	Testing of electronic components using multimeter - Resistor, Capacitor, Diode, Transistor
4	and JFET.
	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processing
5	methods.
	Design and fabrication of a single sided PCB for a simple circuit.
	Inter-connection methods and soldering practice.
6	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety
	precautions.

	Soldering practice in connectors and general purpose PCB, Crimping.			
	Assembling of electronic circuit/system on general purpose PCB, test and show the			
	functioning (Any two)-			
	•Fixed voltage power supply with transformer			
7	•Rectifier diode			
	Capacitor filter			
	•Zener/IC regulator			
	Square wave generation using IC 555 timer in IC base.			
8	Assembling of electronic circuits using SMT (Surface Mount Technology) stations.			
9	Introduction to EDA tools (such as KiCad or XCircuit)			
9				

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Attendance Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum is that the student must score a minimum of 50% overall, combining marks from both

Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.

• There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate safety measures against electrical shocks	K2
CO2	Develop familiarity with transformers, rheostats, batteries and earthing schemes	К3
CO3	Develop the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	К3
CO4	Identify various electronic components	K2
CO5	Operate various measuring instruments	К3
CO6	Design simple electronic circuits on breadboard and PCB	К3
CO7	Build the ability to work in a team with good interpersonal skills	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2	1					2	1					2
CO3	2					1						2
CO4	3					2						3
CO5	3				3	2			2			3
CO6	3		3	1	3	2	1		2			3
CO7									3	2		2

	Text Books						
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Electrical Design Estimating and Costing	K B Raina and S K Bhattacharya	New Age International Publishers	2/e 2024			
2	Electrical Systems Design	M K Giridharan	I K International Publishing House Pvt. Ltd	3/e 2022			
3	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019			
4	Basic Electronics and Linear Circuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Mc Graw Hill	2/e 2017			

Continuous Assessment with equal weightage for both specialisations (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

 Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions. • Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination with equal weightage in both specialisations (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1/S2

COURSE NAME: HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCPWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- This course provides essential knowledge on physical activity, health, and wellness.
 Students will understand body systems, exercise principles, nutrition, mental health, and disease management.
- 2. Students will learn about the benefits of yoga, risks of substance abuse, and basic first aid. By the end, students will be equipped to lead healthier lifestyles and design effective exercise programs.

SYLLABUS

Module No.	Syllabus Description				
1	Human Body Systems related to Physical activity and its functions: Respiratory System - Cardiovascular System. Musculoskeletal System and the Major Muscle groups of the Human Body. Quantifying Physical Activity Energy Expenditure and Metabolic equivalent of task (MET) Exercise Continuum: Light-intensity physical activity, Moderate - intensity physical activity, Vigorous -intensity physical activity. Defining Physical Activity, Aerobic Physical Activity, Anaerobic Physical Activity, Exercise and Health-Related Physical Fitness.	Hours 4			

	FITT principle to design an Exercise programme			
	Components of Health related Physical Fitness: - Cardiorespiratory			
	Fitness- Muscular strength- Muscular endurance- Flexibility- Body			
	composition.			
	Concept of Health and Wellness: Health and wellness differentiation,			
	Factors affecting health and wellness. Mental health and Factors			
	affecting mental health.			
	Sports and Socialization: Sports and character building - Leadership			
	through Physical Activity and Sports			
2	Diet and nutrition: Exploring Micro and Macronutrients: Concept of	2		
	Balanced diet			
	Carbohydrate & the Glycemic Index			
	Animal & Plant - based Proteins and their Effects on Human Health			
	Dietary Fats & their Effects on Human Health			
	Essential Vitamins and Minerals			
	Lifestyle management strategies to prevent / manage common			
	hypokinetic diseases and disorders - Obesity - Cardiovascular			
	diseases (e.g., coronary artery disease, hypertension) - Diabetes -			
	Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low			
	back pain, Kyphosis, lordosis, flat foot, Knock knee)			
	Meaning, Aims and objectives of yoga - Classification and			
3	importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama	4		
	and Its Types - Active Lifestyle and Stress Management Through			
	Yoga			
	Understanding on substance abuse and addiction - Psychoactive			
	substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative -			
	Cocaine -Other stimulants, including caffeine -Hallucinogens -			
	Tobacco -Volatile solvents.			
ļ				

4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion,	2
	Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context.

 Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total	
10	20	20	50	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	K2	
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2	
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2	
CO4	Explain the basics of first aid and describe common sports injuries	K2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3				0		3		3				2
CO4				2		3						2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, New Delhi	2005
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	<u>Lippincott Williams & Wilkins</u>	2010

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
Attendance	Attend at least 75% of both theory and practical classes. Students will receive 10 marks based on their attendance in classes. - Students who do not meet this requirement will not be eligible to proceed to attain the next criteria.
Assignment /	Assignments will be given to students to assess their understanding of the
Presentation	subjects taught. Students will be required to make presentations on the
	subjects taught in class, and their understanding of the subjects will be
	assessed. Based on the Assignments and Presentations the students will be awarded marks our of 20
Activity Evaluation	The Assignment / Presentation faculty handling the class will use the tests
	from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set
	forth by FIT India. Measurements will be taken for all the tests of the FIT
	India Fitness Protocol and the evaluation will be based on the benchmark
	score received for the following tests:
	1. V Sit Reach Test
	2. Partial Curl Up - 30 seconds
	3. Push Ups (Male) and Modified Push Up (Female)
	4. Two (2) Km Run/Walk
	Students who achieve a total benchmark score of 8 across the
	aforementioned 4 tests will be awarded pass marks for activity evaluation.
	Students who score better will be awarded a maximum mark of 20.
Activity Evaluation	Physically challenged and medically unfit students can opt for an objective
- Special	test to demonstrate their knowledge of the subjects taught. Based on their
Circumstances	performance in the objective test, they will be awarded marks out of 20.
Activity Evaluation	Students who enrolled themselves in the NCC during the course period

- Special	(between the start and end dates of the program) and attended 5 college
Considerations -	level parades will be awarded pass marks for activity evaluation. Students
NCC	who attend more parades will be eligible for a maximum mark of 20 based
	on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- 3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch

Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder,

measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION (Common to all Branches)

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- 1. Personality development by being aware of the self, communicating and connecting with others, participating in groups/teams, developing thinking skills, developing problem-solving & decision-making skills, and developing ability to exercise emotional intelligence
- 2. Equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise
- 3. Equip students to build their profile in line with the professional requirements.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.

- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Miniproject course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1: Activity Table

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self- introduction among the group members	L	1	G	-	Connecting with group	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	members Time management - Gantt Chart	
1.3	Preparation of Gantt chart based on the time plan	SS	1	G	2		
2.1	Take an online personality development test, self reflect and report	SS	1	I	2	Self- awarenessWriting	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations, from the point of view of the following assumed roles i) their parent/guardian/mentor	L	1	I	2	Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work-Compiling of ideas Mind mapping	CO1

	ii) their friend/sibling/cousin						
	-						
2.3	Role-storming exercise 2:						
	Students assume the role of their teacher and write about the						
	 Skills required as a B.Tech graduate Attitudes, habits, approaches required and activities to be practised during their B.Tech years, in order to achieve the set goals 	SS	1	I	2		CO1
2.4	Discuss the skills identified through rolestorming excercise by each one within their own group and improvise the list of skills	L	1	G	2		CO2
2.5	Prepare a mind map based on the role- storming exercise and exhibit/present it in class	SS	2	G	2		CO1
3	Prepare a presentation on instances of empathy they have observed in their own life or in other's life	L	2 to 4	I	2	• Empathy	CO2
4.1	Each student connects and networks with a minimum of 3 professionals from industry/public sector organizations/other agencies/NGOs /academia (atleast 1 through LinkedIn)	SS	3	I	2	 Workplace awareness Listening Communicatio n - interacting with people 	
4.2	Interact with them to understand their workplace details including • workplace skills required • their work experience • activities they have done to enhance their employability during their B.Tech years • suggestions on the different activities to be done during B.Tech years Prepare a documentation of this	SS	3	I	4	Networking through various media including LinkedIn Discussion in groups Report preparation Creativity Goal setting -	CO2
4.3	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected	SS	3	G	2	Preparation of action plan	CO2

	by the individuals						
	Prepare the Minutes of the discussions						
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	I	2		CO1
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		СОЗ
5.5	Prepare a report based on the problem- solving experience	SS	7	G	2		CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self introduction video	SS	8	I	3	Trome-ounding	CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)	SS	10	G	3	Diversity	CO2,
9	Take online Interview skills development sessions like robotic	SS	10	I	2	Interview skills	CO6

	interviews; self-reflect and report						
10	Take an online listening test, self reflect and report	SS	11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students	L	8	I/G	4		CO4
11.2	Activities to help students identify errors in English language usage	L	9	I/G	2		CO4
11.3	Activity to help students identify commonly mispelled words, commonly mispronounced words and confusing words	L	10	I/G	2	 English vocabulary English language skills 	CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	SS	12	I	2	WritingPresentationGroup work	CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2	• Self-reflection	CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social modifies 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1	social media platforms • Profile building	CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

Lab hour Activities (P): 24 Marks

Sl No	Activity		Skill	СО
1	Hands-on sessions on day-to-day engineering skills		Basic practical	3
	and a self-reflection report on the experience gained:		engineering	
	Drilling practice using electric hand drilling machines.	24	skills	
	2. Cutting of MS rod and flat using electric hand cutters.			
	3. Filing, finishing and smoothening using electrically operated hand grinders.			
	4. MS rod cutting using Hack saw by holding the work in bench wise.			
	5. Study and handling different types of measuring instruments.			
	6. Welding of MS, SS work pieces.			
	7. Pipe bending practice (PVC and GI).			
	8. Water tap fitting.			
	9. Water tap rubber seal changing practice.			
	10. Union and valves connection practice in pipes.			
	11. Foot valve fitting practice.			
	12. Water pump seal and bearing changing practice.			
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	K5
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	K5
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	K6
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	K6

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022				
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020				
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023				
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016				
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016			
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018			
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017			
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023			
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004			

SEMESTER 2 GROUP B

SEMESTER S2

COURSE NAME: MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE

(Common to Group B & C)

Course Code	GYMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	Basic knowledge in single variable calculus.	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and differentiation and integration of vector-valued functions emphasizing their applications in engineering contexts.

SYLLABUS

Module No.	Syllabus Description			
1	Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slopes, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local Linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables - relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8)	9		

2	Double integrals, Reversing the order of integration in double integrals, Change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, Finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)	9
3	Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3)	9
4	Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z=g(x, y)$, Flux integrals over surfaces of the form $z=g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7,15.8)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems.	К3
CO2	Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes.	К3
СОЗ	Compute the derivatives and line integrals of vector functions and to learn their applications.	К3
CO4	Apply the concepts of surface and volume integrals and to learn their inter-relations and applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024	

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023	
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017	
3	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016	
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021	
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023	

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/111107108				
2	https://nptel.ac.in/courses/111107108				
3	https://nptel.ac.in/courses/111107108				
4	https://nptel.ac.in/courses/111107108				

SEMESTER S1/S2

COURSE NAME: PHYSICS FOR ELECTRICAL SCIENCE

(Common to Group B)

Course Code	GBPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hr 30 Mins
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students a solid background in the fundamentals of Physics and to impart that knowledge in Electrical Science disciplines. The course is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes.
- **2.** To make the students gain practical knowledge to correlate the theoretical studies and to develop practical applications of engineering.

Module No.	Syllabus Description			
1	Semiconductor Physics Intrinsic semiconductor, Derivation of density of electrons in conduction band and density of holes in valence band, Intrinsic carrier concentration, Variation of Intrinsic carrier concentration with temperature, Extrinsic semiconductor (qualitative) Formation of p-n junction, Fermi level in semiconductors-intrinsic and extrinsic, Energy band diagram of p-n junction - Qualitative description of charge flow across a p-n junction - Forward and reverse biased p-n junctions, Diode equation (Derivation), V-I Characteristics of p-n junction	9		
2	Semiconductor Devices Semiconductor devices - Rectifiers- Full wave and Half wave, Zener	9		

	diode - V-I characteristics - Zener breakdown and Avalanche breakdown,	
	Tunnel diode - V-I characteristics, Applications of Zener and Tunnel	
	diodes.	
	Photonic devices (qualitative) - Photo detectors (Junction and PIN	
	photodiodes), Applications, Solar cells- V-I Characteristics, Efficiency,	
	Stringing of Solar cells to solar panel, Light Emitting Diode, Applications	
	of LED	
	Superconductivity & Dielectrics	
	Super conductivity, Transition temperature, Critical field, Meissner	
	effect, Type I and Type II Super conductors, Applications of	
_	superconductors.	_
3	Dielectric constant, Polarization, Permittivity- relative permittivity,	9
	Relation between polarization and dielectric constant, Types of	
	Polarization, Internal fields in liquids and solids, Clausius Mossotti	
	Relation, Dielectric loss (qualitative), Dielectric breakdown (qualitative)	
	Laser & Fiber Optics	
	Optical processes - Absorption, Spontaneous emission and stimulated	
	emission, Properties of laser, Principle of laser - conditions for sustained	
	lasing - Population inversion, Pumping, Metastable states, Basic	
	components of laser - Active medium- Optical resonant cavity,	
4	Construction and working of Ruby laser, Semiconductor Laser	9
	(Qualitative), Applications of laser.	
	Optical fibre-Principle of propagation of light, Types of fibres-Step index	
	and Graded index fibres, Numerical aperture -Derivation, Applications of	
	optical fibres - Fibre optic communication system (block diagram)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the fundamentals of Semiconductor Physics.	K2			
CO2	Describe the behaviour of semiconductor materials in semiconductor devices.	K2			
CO3	Explain Superconductivity and basic theory of dielectrics	K2			
CO4	Apply the comprehended knowledge about laser and fibre optics in various engineering applications	К3			
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	K3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	2										3
CO5	3	2			3				2			3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003			
2	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017			
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995			
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002			
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010			
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022			
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019			
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017			
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016			

	Video Links (NPTEL, SWAYAM etc)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/108106181						
2	https://nptel.ac.in/courses/108108112						
3	https://nptel.ac.in/courses/115103108						
4	https://nptel.ac.in/courses/115102124						

1. Continuous Assessment (10 Marks)

v. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

vi. Conduct of Experiments (2 Marks)

• Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.

- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

vii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

viii. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

4. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

5. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

6. Viva Voce (1 Marks)

 Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List (Minimum 10 Experiments)

Experiment No.	Experiment			
1	Diode characteristics			
2	Zener diode- V-I characteristics			
3	Tunnel diode –V-I characteristics			
4	Half wave rectifier			
5	Full wave rectifier			
6	Hall effect in semiconductors			
7	Determination of band gap energy of a semiconductor			
8	Characteristics of LED			
9	Solar Cell- V-I and Intensity Characteristics			
10	Laser – Determination of wavelength using diffraction grating			
11	Laser- To measure the wavelength using a millimetre scale as a grating			
12	Compare the variation of current with potential difference, for a metal, filament bulb and semiconductor diode.			
13	Determination of dielectric constant			
14	CRO -Measurement of frequency and amplitude of wave forms			
15	Photo diode- V-I Characteristics			
16	Numerical aperture of optical fiber			

SEMESTER S1/S2

COURSE NAME: CHEMISTRY FOR INFORMATION SCIENCE

(Common to Group A & B)

Course Code	GXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hr 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- 2. Additionally, to familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues such as climate change, pollution, and waste management, which impact quality of life.

Module No.	Syllabus Description	Contact Hours
	Electrochemistry and Corrosion Science (9 Hours)	
	Electrochemical Cell- Electrode potential- Nernst equation for single	
	electrode and cell (Numerical problems)- Reference electrodes - SHE &	
	Calomel electrode -Construction and Working - Electrochemical series -	
	Applications - Glass Electrode & pH Measurement-Conductivity-	
1	Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel	
	cell (acid electrolyte only) construction and working.	9
	Corrosion -Electrochemical corrosion mechanism (acidic & alkaline	
	medium) - Galvanic series - Corrosion control methods - Cathodic Protection	
	- Sacrificial anodic protection and impressed current cathodic protection -	
	Electroplating of copper - Electroless plating of copper.	

	Materials for Electronic Applications (9 Hrs)	
	Nanomaterials - Classification based on Dimension & Materials-	
	Synthesis – Sol gel & Chemical Reduction - Applications of nanomaterials	
	- Carbon Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots -	
	structure, properties & application.	
	Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated	
2	polymers (Examples only)- Conducting Polymers-Classification-	9
	Polyaniline & Polypyrrole-synthesis, properties and applications.	
	Organic electronic materials and devices- construction, working and	
	applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized	
	Solar Cells (DSSC)	
	Materials used in Quantum computing Technology, Super capacitors,	
	Spintronics	
	Molecular Spectroscopy and Analytical Techniques (9 Hours)	
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's	
	law - Numerical problems - Electronic Spectroscopy - Principle, Types of	
	electronic transitions -Role of conjugation in absorption maxima-	
	Instrumentation-Applications - Vibrational spectroscopy - Principle-	
3	Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O -	9
	Applications	
	Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-	
	Working and Application.	
	Electron Microscopic Techniques: SEM - Principle, instrumentation and	
	Applications.	
	Environmental Chemistry (9Hrs)	
	Water characteristics - Hardness - Types of hardness- Temporary and	
	Permanent - Disadvantages of hard water -Degree of hardness (Numericals)	
4	Water softening methods-Ion exchange process- Principle, procedure and	9
•	advantages. Reverse osmosis – principle, process and advantages. – Water	
	disinfection methods – chlorination-Break point chlorination, ozone and UV	
	irradiation. Dissolved oxygen (DO), BOD and COD- Definition &	
	Significance.	

Waste Management: Sewage water treatment- Primary, Secondary and	
Tertiary - Flow diagram -Trickling filter and UASB process. E Waste,	
Methods of disposal – recycle, recovery and reuse. Chemistry of climate	
change- Greenhouse Gases- Ozone Depletion-Sustainable Development- an	
introduction to Sustainable Development Goals.	

Self Study Topics (NOT TO BE INCLUDED FOR END SEMESTER EXAMINATION): Construction, working and applications of Lead acid battery, Nickel cadmium battery and Nickel metal hydrid battery.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the Basic Concepts of Electrochemistry and Corrosion to explore the possible applications in various engineering fields	K2
CO2	Describe the use of various engineering materials in different industries	K2
CO3	Use appropriate analytical techniques for synthesis and characterisation of different engineering materials	К3
CO4	Outline various water treatment and waste management methods	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018		
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018		
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005		
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015		

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
	https://archive.nptel.ac.in/courses/104/106/104106137/				
	https://archive.nptel.ac.in/courses/113/105/113105102/				
1	https://archive.nptel.ac.in/courses/113/104/113104082/				
	https://www.youtube.com/watch?v=BeSxFLvk1h0				
	https://archive.nptel.ac.in/courses/113/104/113104102/				
2	https://archive.nptel.ac.in/courses/104/105/104105124/				
	https://archive.nptel.ac.in/courses/105/104/105104157/				

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1.Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

2.Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

*Minimum 10 Experiments

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
5	(a) Urea-formaldehyde resin
	(b) Phenol-formaldehyde resin
6	Determination of wavelength of absorption maximum and colorimetric estimation of
	Fe ³⁺ in solution
7	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method

11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S2

COURSE NAME: FOUNDATIONS OF COMPUTING: FROM HARDWARE ESSENTIALS TO WEB DESIGN

(Common to Group A & B)

Course Code	GXEST203	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the basics of computer systems along with peripherals
- 2. Understand network architectures, devices and topologies
- 3. Design and deploy web pages.

Module No.	Syllabus Description	Contact Hours
1	Computer Hardware – CPU, Memory - Memory hierarchy: registers, cache, RAM, virtual memory, Motherboard - Computer Peripherals - I/O devices, Storage devices- HDDs, SSDs, optical drives, I/O communication and device management, Interface cards – Buses – Firmware - Boot process	9
2	Binary representation of data and numbers, Integer Representation, Data storage units - bits, bytes, kilobytes, etc., ASCII and Unicode, CPU Architecture and Instruction Set: Basic CPU architecture - ALU, registers, control unit, Instruction format and assembly language (basics only) Fetch-execute cycle and instruction execution.	9

3	Computer System Software - Operating Systems, Basic commands in Linux / Windows, Shell scripting (bash). Computer Communications – LAN, MAN, WAN, Client/Server networks, Peer-to-Peer networks, Topologies. Basics of IP addresses, DHCP, NAT, Network Security (Desktop & Perimeter), DNS, VPN, Routers, Client-Server, Internet, WWW, Web servers.	9
4	Web Design (Basics of HTML, CSS, and JavaScript) – Understanding the web content delivery, Understanding HTML and XHTML Connections, Understanding Cascading Style Sheets, Understanding JavaScript	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the components of the a computing environment.	K2
CO2	Understand data representations and CPU architectures	K2
CO3	Understand the computer network architecture and protocols used	K2
CO4	Create and validate simple interactive web pages	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3			3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Invitation to Computer Science	G.Michael Schneider, Judith Gersting	Cengage	Ed 2, 2020			
2	The Architecture of Computer Hardware, Systems Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	Ed 5, 2014			
3	HTML, CSS, and JavaScript All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	Ed 1, 2020			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Elements of Computing Systems, second edition: Building a Modern Computer from First Principles	Noam Nisan and Shimon Schocken	The MIT Press	2nd Edn, 2021			
2	Peter Norton's Introduction to Computers	Peter Notron	McGrawHill	6th Edn, 2010			
3	Web Design with HTML, CSS, JavaScript and Jquery	Jon Duckett	Wiley	First Ed., 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://www.nand2tetris.org/				
2	https://onlinecourses.swayam2.ac.in/nou20_cs05/preview				

SEMESTER S2

COURSE NAME: ENGINEERING MECHANICS

(Common to EEE,CP,RA & RU)

Course Code	GBEST213	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

The objective of the course is to enable students to analyse basic mechanics problems and apply vector based approach to solve them.

Module No.	Syllabus Description	Contact Hours
1	Introduction to statics: introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations, forces in space. Support reactions of beams (point load and UDL on Simply supported and cantilever beams) Force systems: rectangular components in 2D and 3D, moment and couple, resultants Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D	10
2	Friction: -laws of friction – analysis of blocks and ladder Centroid of composite areas – moment of inertia- parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring and disc	10

3	Dynamics – rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle. – motion on horizontal and inclined surfaces, motion of connected bodies. Combined motion of translation and rotation.	8
4	Mechanical vibration - free and forced vibration, degree of freedom. Simple harmonic motion - spring mass model, period, stiffness, frequency, simple numerical problems of single degree of freedom	8

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

CO1	Course Outcome Understand the vector representation of forces and moments	Bloom's Knowledge Level (KL) K1,K2
CO2	Identify and describe the components of system of forces acting on the rigid body	K2,K3
CO3	Apply the conditions of equilibrium to different force system.	K3
CO4	Identify appropriate principles to solve problems of mechanics.	K2, K3
CO5	Develop the understanding of fundamental principles of rigid body dynamics	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	3										

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Mechanics	Timoshenko and Young	McGraw Hill Publishers	5 th Edition 2017					
2	Engineering Mechanics: Combined Statics and Dynamics	Russell C. Hibbeler	Pearson Education,	14 th Edition 2015					
3	Engineering Mechanics - Statics and Dynamics,	Shames, I. H.	Prentice Hall of India.	4 th Edition 2008					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Mechanics Statics	J. L. Meriam, L. G. Kraige	Wiley	9 th Edition 2020				
2	Engineering Mechanics	Chandramouli	PHI Learning	2011				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/112106286						
2	https://nptel.ac.in/courses/112106286						
3	https://nptel.ac.in/courses/112106286						
4	https://nptel.ac.in/courses/112106286						

SEMESTER 2

COURSE NAME: PROGRAMMING IN C

(Common to Group A & B)

Course Code	GXEST204	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. This course shall prepare Engineering Graduates to write versatile C programs for solving computational problems that they come across in their professional life.
- 2. On completing this course a learner will be able to write efficient C programs to solve real world computational problems.

Module No.	Syllabus Description	Contact Hours
	Problem solving: Problem solving using Algorithms, Pseudocode and	
	Flowcharts.	
	C fundamentals: Character set, Constants, Identifiers, keywords, basic data	
1	types, Variables, Operators and its precedence, bitwise operators,	
	Expressions, Statements, Input and Output statements- Structure of a C	9
	program– simple programs.	
	Control statements: if, if-else, nested if, switch, while, do-while, for, break	
	& continue, nested loops.	
	Arrays: Single dimensional arrays – defining an array, array initialization,	
_	accessing array elements, Enumerated data type, Two-dimensional arrays -	
2	defining a two-dimensional array - Programs for matrix processing -	
	Programs for sequential search, Bubble sort.	9

	Strings: declaring a string variable, reading and displaying strings, string	
	related library functions – Programs for string matching.	
	Functions: Function definition, function call, function prototype, parameter	
	passing - Recursion - Passing array to function. Macros: Defining and	
	calling macros.	
3	Structures: defining a structure variable, accessing members, array of	9
	structures, passing structure to function. Union	
	Storage Class: Storage Class associated with variables: automatic, static,	
	external and register.	
	Pointers: declaration, operations on pointers, passing pointer to a function,	
	accessing array elements using pointers, processing strings using pointers,	
	pointer to pointer, array of pointers, pointer to function, pointer to structure,	
4	Dynamic memory allocation.	0
	Files: Different types of files in C – Opening & Closing a file – Writing to	9
	and Reading from a file - Processing files - Library functions related to file	
	- fseek(), ftell(), fread(), fwrite().	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze a computational problem and try to solve it using algorithms, flowcharts and also develop C programs from them using branching and looping statement.	K2
CO2	Develop C programs for processing arrays, matrices and strings	К3
CO3	Divide a given computational problem into a number of modules and develop functions to find the solution to the computational problem and also use structures for data organization	K3
CO4	Develop C programs which use pointers for data processing and parameter passing	К3
CO5	Develop C programs for file creation and processing	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	1	-	1	-	-	-	1
CO2	3	3	3	3	-	1	-	1	-	-	-	1
CO3	3	3	3	3	-	1	-	1	-	-	-	1
CO4	3	3	3	3	-	1	-	1	-	-	-	1
CO5	3	3	3	3	-	1	-	1	-	-	ı	1

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Programming with C	Byron S Gottfried	Mc Graw Hill Education	4 th Edition July 2018			
2	The C Programming Language	Brian W. Kernighan and Dennis Ritchie	Pearson	2 nd Edition January 2015			
3	C The Complete Reference	Herbert Schildt	Mc Graw Hill Education	4 th Edition July 2017			

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Programming In Ansi C	E Balagurusamy	Mc Graw Hill	8 th Edition March 2019	
2	Programming in C	Kamthane	Pearson	3rd Edition January 2015	
3	Let us C	Yashavant Kanetkar	Bpb publishers	19th Edition December 2022	
4	Computer Programming in C	V Rajaraman	PHI Learning Private Limited	2nd July 2019	

SEMESTER S2

COURSE NAME: ENGINEERING ENTREPRENEURSHIP AND IPR

(Common to all Branches)

Course Code	UCEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based business ideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- 3. Create a comprehensive business plan for a new venture.
- 4. Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance for startups.
- 5. Develop skills for prototyping, stakeholder engagement, and team collaboration...

Module No.	Syllabus Description	Contact Hours
	Introduction to Ideation, Innovation & Entrepreneurship	
	• What is Ideation?	
	Understanding Innovation	
1	 Frameworks for Innovation 	9
1	The Entrepreneurial Mindset	,
	 Starting a Business, types formation statutory compliances. 	
	Resources for Aspiring Entrepreneurs	
	Introduction to Intellectual Property Rights (IPR)	

	Types of IDD. Detents the demander associate to the territory				
	Types of IPR: Patents, trademarks, copyrights, trade secrets				
	• Strategies for protecting intellectual property based on the type of				
	innovation				
	Role of IPR in securing funding and competitive advantage				
	Importance of building a strong team				
	Identifying roles				
	Skill sets				
	• Team dynamics				
	Identifying Pain Points and problem statement				
	Idea Generation Techniques				
	Developing and Refining Ideas				
	Develop strategies for bringing your innovation to life				
	Problem and solution canvas preparation				
	Orientation and canvas introduction				
	Customer needs assessment				
	Market segmentation				
	Value proposition				
	Competitive analysis				
	Market entry strategy				
	Market validation				
	Regulatory and legal considerations				
	Customer profiling				
2	Review of market research	9			
	Customer segmentation				
	Customer profiling				
	Persona development				
	Validation and feedback				
	Prioritisation and selection				
	Communication and messaging				
	Competitor analysis				
	Identify competitors				
	Competitor profiling				
	SWOT analysis				

	Market positioning	
	Customer feedback and reviews	
	Pricing analysis	
	Differentiation strategy	
	Benchmarking and improvement	
	Business plan preparation	
	Business plan framework	
	Market analysis	
	Product/ service description	
	Marketing and sales strategy	
	Operations plan	
	Financial projections	
	Risk management	
3	Prototype development plan preparation	9
	Prototype requirements analysis	
	Technical specifications	
	Development approach	
	Development timeline	
	Resource allocation	
	Testing and quality assurance	
	Iterative development and feedback loop	
	Documentation and version control	
	Prototype development	
	Stakeholder engagement strategies	
4	• Investors	9
4	• Partners	9
	• Customers	
	Advisors & Mentors	

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Ex-1	Internal Ex-2	Total
5	35	10	10	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 1 or 2 Questions from each module.	• 2 questions will be given from each module, out of	
Total of 8 Questions, each carrying	which 1 question should be answered. Each	40
3 marks (6x2 = 12 marks)	question can have a maximum of 3 subdivisions.	10
	Each question carries 9 marks.	
	(4x7 = 28 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
601	Gain foundational knowledge of Innovation and Entrepreneurship,	K1, K2		
CO1	Intellectual Property Rights (IPR) and their importance for startups.			
	Develop a framework for identifying, curating and validating	K2, K3		
CO2	engineering-based business ideas.			
604	Learn essential tools for understanding product-market fit and	K2, K3		
CO3	customer needs.			
CO4	Create a comprehensive business plan for a new venture.	K3, K4		
605	Develop skills for prototyping, stakeholder engagement, and team	K5, K6		
CO5	collaboration.			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3						
CO2	2	2	3	3	3	3	3	3	3			
CO3	2	2	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	The Engineering Handbook	Richard C.Dorf	CRC Press		
2	The Innovator's DNA	Clayton M. Christensen and Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)	
3	Start with Why	SIMON SINEK	Portfolio	Reprint edition (December 27, 2011)	
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur			
5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala			
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan			
7	Indian Patent Law	P. Narayanan			
8	The Law of Copyright and Designs	B.L. Wadehra			
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli			
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal			

SEMESTER S1/S2

COURSE NAME: HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCPWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- This course provides essential knowledge on physical activity, health, and wellness.
 Students will understand body systems, exercise principles, nutrition, mental health, and disease management.
- 2. Students will learn about the benefits of yoga, risks of substance abuse, and basic first aid. By the end, students will be equipped to lead healthier lifestyles and design effective exercise programs.

Module No.	Syllabus Description			
	Human Body Systems related to Physical activity and its functions:			
	Respiratory System - Cardiovascular System.			
	Musculoskeletal System and the Major Muscle groups of the Human			
	Body.			
	Quantifying Physical Activity Energy Expenditure and Metabolic			
1	equivalent of task (MET)			
	Exercise Continuum: Light-intensity physical activity, Moderate -			
	intensity physical activity, Vigorous -intensity physical activity.			
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic			
	Physical Activity, Exercise and Health-Related Physical Fitness.			
	FITT principle to design an Exercise programme			

	Components of Health related Physical Fitness : - Cardiorespiratory			
	Fitness- Muscular strength- Muscular endurance- Flexibility- Body			
	composition.			
	Concept of Health and Wellness: Health and wellness differentiation,			
	Factors affecting health and wellness. Mental health and Factors			
	affecting mental health.			
	Sports and Socialization: Sports and character building - Leadership			
	through Physical Activity and Sports			
2	Diet and nutrition: Exploring Micro and Macronutrients: Concept of Balanced diet	2		
	Carbohydrate & the Glycemic Index			
	Animal & Plant - based Proteins and their Effects on Human Health			
	Dietary Fats & their Effects on Human Health			
	Essential Vitamins and Minerals			
	Lifestyle management strategies to prevent / manage common			
	hypokinetic diseases and disorders - Obesity - Cardiovascular			
	diseases (e.g., coronary artery disease, hypertension) - Diabetes -			
	Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low			
	back pain, Kyphosis, lordosis, flat foot, Knock knee)			
	Meaning, Aims and objectives of yoga - Classification and			
3	importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama	4		
	and Its Types - Active Lifestyle and Stress Management Through			
	Yoga			
	Understanding on substance abuse and addiction - Psychoactive			
	substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative -			
	Cocaine -Other stimulants, including caffeine -Hallucinogens -			
	Tobacco -Volatile solvents.			

4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	2
---	--	---

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	K2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2
CO4	Explain the basics of first aid and describe common sports injuries	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3				0		3		3				2
CO4				2		3						2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999		
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022		

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018	
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022	
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, New Delhi	2005	
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998	
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012	
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams & Wilkins	2010	

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation	
Attendance	Attend at least 75% of both theory and practical classes. Students will receive 10 marks based on their attendance in classes. - Students who do not meet this requirement will not be eligible to proceed to attain the next criteria.	
Assignment /	Assignments will be given to students to assess their understanding of the	
Presentation	subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks our of 20	

Activity Evaluation	The Assignment / Presentation faculty handling the class will use the tests
	from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set
	forth by FIT India. Measurements will be taken for all the tests of the FIT
	India Fitness Protocol and the evaluation will be based on the benchmark
	score received for the following tests:
	1. V Sit Reach Test
	2. Partial Curl Up - 30 seconds
	3. Push Ups (Male) and Modified Push Up (Female)
	4. Two (2) Km Run/Walk
	Students who achieve a total benchmark score of 8 across the
	aforementioned 4 tests will be awarded pass marks for activity evaluation.
	Students who score better will be awarded a maximum mark of 20.
Activity Evaluation	Physically challenged and medically unfit students can opt for an objective
- Special	test to demonstrate their knowledge of the subjects taught. Based on their
Circumstances	performance in the objective test, they will be awarded marks out of 20.
Activity Evaluation	Students who enrolled themselves in the NCC during the course period
- Special	(between the start and end dates of the program) and attended 5 college
Considerations -	level parades will be awarded pass marks for activity evaluation. Students
NCC	who attend more parades will be eligible for a maximum mark of 20 based
	on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.

- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- 3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch

Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.

- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder,

measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION (Common to all Branches)

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- 4. Personality development by being aware of the self, communicating and connecting with others, participating in groups/teams, developing thinking skills, developing problem-solving & decision-making skills, and developing ability to exercise emotional intelligence
- 5. Equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise
- 6. Equip students to build their profile in line with the professional requirements.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.

- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Miniproject course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1: Activity Table

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self- introduction among the group members	L	1	G	-	Connecting with group	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	members Time management - Gantt Chart	
1.3	Preparation of Gantt chart based on the time plan	SS	1	G	2		
2.1	Take an online personality development test, self reflect and report	SS	1	I	2	Self- awarenessWriting	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations, from the point of view of the following assumed roles i) their parent/guardian/mentor	L	1	I	2	Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work-Compiling of ideas Mind mapping	CO1

	ii) their friend/sibling/cousin						
	-						
2.3	Role-storming exercise 2:						
	Students assume the role of their teacher and write about the						
	 Skills required as a B.Tech graduate Attitudes, habits, approaches required and activities to be practised during their B.Tech years, in order to achieve the set goals 	SS	1	I	2		CO1
2.4	Discuss the skills identified through rolestorming excercise by each one within their own group and improvise the list of skills	L	1	G	2		CO2
2.5	Prepare a mind map based on the role- storming exercise and exhibit/present it in class	SS	2	G	2		CO1
3	Prepare a presentation on instances of empathy they have observed in their own life or in other's life	L	2 to 4	I	2	• Empathy	CO2
4.1	Each student connects and networks with a minimum of 3 professionals from industry/public sector organizations/other agencies/NGOs /academia (atleast 1 through LinkedIn)	SS	3	I	2	 Workplace awareness Listening Communication interacting with people 	
4.2	Interact with them to understand their workplace details including • workplace skills required • their work experience • activities they have done to enhance their employability during their B.Tech years • suggestions on the different activities to be done during B.Tech years Prepare a documentation of this	SS	3	I	4	with people Networking through various media including LinkedIn Discussion in groups Report preparation Creativity	CO2
4.3	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected	SS	3	G	2	Goal setting - Preparation of action plan	CO2

	by the individuals						
	Prepare the Minutes of the discussions						
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	I	2		CO1
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		СОЗ
5.5	Prepare a report based on the problem- solving experience	SS	7	G	2		CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self introduction video	SS	8	I	3	Trome-building	CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)	SS	10	G	3	Diversity	CO2,
9	Take online Interview skills development sessions like robotic	SS	10	I	2	• Interview skills	CO6

	interviews; self-reflect and report						
10	Take an online listening test, self reflect and report	SS	11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students	L	8	I/G	4		CO4
11.2	Activities to help students identify errors in English language usage	L	9	I/G	2		CO4
11.3	Activity to help students identify commonly mispelled words, commonly mispronounced words and confusing words	L	10	I/G	2	 English vocabulary English language skills 	CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	SS	12	I	2	WritingPresentationGroup work	CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2	■ Self-reflection	CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social modifies 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1	social media platforms Profile building	CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	CO
1	Hands-on sessions on day-to-day engineering skills		Basic practical	3
	and a self-reflection report on the experience gained:		engineering	
	13. Drilling practice using electric hand drilling machines.	24	skills	
	14. Cutting of MS rod and flat using electric hand cutters.			
	15. Filing, finishing and smoothening using			
	electrically operated hand grinders.			
	16. MS rod cutting using Hack saw by holding the			
	work in bench wise.			
	17. Study and handling different types of measuring			
	instruments.			
	18. Welding of MS, SS work pieces.			
	19. Pipe bending practice (PVC and GI).			
	20. Water tap fitting.			
	21. Water tap rubber seal changing practice.			
	22. Union and valves connection practice in pipes.			
	23. Foot valve fitting practice.			
	24. Water pump seal and bearing changing practice.			
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	K5
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	K5
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	K6
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	K6

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022						
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020						
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023						
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016						
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016						
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018						
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017						
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023						
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004						

SEMESTER S2

COURSE NAME: IT WORKSHOP

(Common to Group A&B)

Course Code	GXESL208	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

1. To provide a basic understanding about computer hardware, software, networks, and web development.

Details of Experiment

Expt. No	Experiment
	(Minimum 10 Experiments)
1	Practice Computer Hardware – Familiarization CPU Box, Motherboard, CPU & Chip-set,
	Interface cards, Card slots, Hard disk, Cables, SMPS, NIC, Various ports, etc. Computer
	Peripherals - I/O Devices. Storage devices, Interface cards – Buses – Firmware
2	Familiarization of Boot process
3	Familiarizing installation of Linux and Windows operating systems
4	Familiarizing basic Unix/Linux commands - ls, mkdir, cp, mv, grep, rmdir, chmod, useradd,
	passwd, history, dmesg, cpuinfo, uname, du, time, write, fdisk
5	Familiarizing networking hardware - RJ45, UTP, fibre, switch, NIC, router, Wireless Access
	Point (WAP), modem
6	Familiarizing basic networking commands - ifconfig, ping, traceroute, nslookup, ssh, scp,

	telnet, ftp
7	View network traffic using Wireshark/Packet tracer
8	Familiarizing the steps how to configure and establishing a network connecting
9	Shell programming in Linux(bash)
10	Create a web page and deploy on a local web server.
11	Use Javascript to validate forms.
12	Create an image slider using HTML, CSS, and JavaScript. Allow users to navigate between images using previous and next buttons.
13	Familiarisation of LaTeX - Basic only
14	Familiarisation of Development Environments - Visual studio code, Sublime Text, Atom
15	Introducing Repositories - Git / Bitbucket

Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understanding of fundamental hardware components of a computer and how to interface them with software systems.	К2
CO2	Familiarize the commandline of Linux operating system and shell programming	К3
CO3	Understand the network communication	К2
CO4	Design and develop basic websites using HTML, CSSS & Javascript and manage the versions.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3		3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Invitation to Computer Science	G.Michael Schneider, Judith Gersting	Cengage	2/e, 2020			
2	LINUX for Developers: Jumpstart Your Linux Programming Skills	William Rothwell	Person	1/e, 2018			
3	HTML, CSS, and JavaScript All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	1/e, 2018			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Architecture of Computer Hardware, Systems Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	5/e, 2014			
2	Mastering Git: Attain expert level proficiency with Git for enhanced productivity and efficient collaboration	Jakub Narębski	Packt	1/e, 2016			
3	Web Design with HTML, CSS, JavaScript and Jquery	Jon Duckett	Wiley	1/e, 2014			

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID					
1	https://overthewire.org/wargames/bandit/					
2	https://www.w3schools.com/					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

Completeness, clarity, and accuracy of the lab record submitted

PROGRAMME CORE 1

SEMESTER S2

COURSE NAME: NETWORK THEORY (COMMON TO EC, EA, AE ,EV BRANCHES)

Course Code	PCECT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To analyze electrical networks using Mesh / Nodal methods /network theorems
- 2. To analyze transient behavior of electrical networks using Laplace transform
- 3. To identify the network functions and parameters of single-port and two-port networks.

SYLLABUS

Module No.	Syllabus Description	
1	Network fundamentals and analysis methods: Concept of networks and circuits, Circuit variables, Ideal and practical sources, Independent and dependent sources, Source transformation, Kirchhoff's laws. Mesh analysis, Node analysis, Super-mesh analysis and super-node analysis applied to both DC and AC networks containing independent and dependent sources.	11

2	Network theorems and applications: Superposition theorem, Reciprocity theorem, Thevenin's theorem, Norton's theorem, Millman's theorem and Maximum power transfer theorem for the analysis of DC and AC networks having independent and dependent sources.	11
3	Laplace transforms and transient analysis: Laplace transforms of standard signals and common functions, Laplace transform theorems (proof not required), Inverse Laplace transforms, Solution of differential equations. Transformation of basic signals and circuits to s – domain with and without initial conditions. Transient analysis of RL, RC and RLC networks with DC, impulse, step and sinusoidal inputs. Analysis of low pass and high pass RC circuits using Laplace transforms.	11
4	Network functions and two-port parameters: Network functions for single-port and two-port networks, Properties of driving point and transfer functions, Significance of poles and zeros of network functions, Pole-zero plot. Impedance, Admittance, Hybrid and Transmission parameters of two-port networks, Reciprocity and symmetry conditions (derivation not required), Inter-relationships between parameters, Series and parallel connections of two-port networks.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze electrical networks using mesh and node methods	K4
CO2	Apply network theorems to analyze electrical networks	К3
CO3	Analyze transient behavior of electrical networks using Laplace transforms	K4
CO4	Identify the network functions and parameters of single-port and two- port networks	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	2									2
CO3	3	3	3	2								2
CO4	3	3	2	3								2

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Basic Engineering Circuit Analysis	R. Mark Nelms, J. David	Irwin Wiley	12/e, 2020	
2	Network Analysis and Synthesis	Franklin F. Kuo	Wiley	2/e, 2012	
3	Circuits and Networks- Analysis and Synthesis	Sudhakar A and Shyammohan S. P	McGraw Hill	5/e, 2015	
4	Network Analysis	Van Valkenburg M.E	Prentice Hall India	Revised 3/e,2019	

	Reference Books								
Sl. No	Title of the Book	Name of the Publisher	Edition and Year						
1	Circuit Theory Analysis and Synthesis	Abhijit Chakrabarti	Dhanpat Rai & Co.	Revised 7/e, 2018					
2	Electric Circuits – Schaum's Outline Series	Joseph A. Edminister, K. Rao and M. Nahvi	McGraw-Hill	5/e, 2017					
3	Electric Circuits and Networks	K. S. Suresh Kumar	Pearson	2008					
4	Network analysis and synthesis	Ravish R	McGraw-Hil	2/e,2015					

SEMESTER 2
COURSE NAME: MEASUREMENTS AND INSTRUMENTATION

Course Code	PCEET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	Nil	Course Type	PC -Theory

Course Objectives:

1. The basic objective of this course is to introduce the concepts of electrical measurement systems and instrumentation. The principle of operation and construction of basic instruments for the of basic circuit parameters, magnetic quantities, and passive parameters by using bridge circuits, sensors and transducers will be discussed. Modern digital instrumentation systems are also introduced through this course.

SYLLABUS

Module No.	Syllabus Description			
1	Functional Elements of Measurements Systems- Block Schematic and brief operation of building blocks Standards of Measurements- Static characteristics (accuracy, precision, linearity, resolution), Need for calibration, Types of errors Instruments- Classification; Operating Forces and Torques: deflecting, controlling and damping torques- Gravity and spring control; air, fluid friction and eddy current damping. Measurement of Voltage and Current- Moving Coil and Moving Iron types., Range Extension – shunts and multipliers (Include simple problems of range extension)	11		
2	Magnetic Measurement- Flux Meter, Determination of BH Curve - Hysteresis Loop (Method of Reversal).			

	Measurement of Resistance, Wheatstone's Bridge, Kelvin's Double Bridge (Simple Problems), Loss of Charge Method, Measurement of Earth Resistance. Measurement of Inductance- Maxwell's Inductance Bridge, Measurement of Capacitance - Schering's Bridge, Measurement of Frequency- Wien Bridge (Include Simple Problems) Q-meter, LCR Meters (Description only)	11
3	Measurement of Power and Energy: Measurement of Power using Dynamometer type wattmeter, Three phase Power Measurement using Two Wattmeter Method (Include Phasor Diagrams and Expressions, Include simple problems of two wattmeter method) Measurement of Energy Using Induction type Energy Meter, Two Element Energy Meter Instrument Transformers-CT and PT- Principle of Operation- Range Extension Basic Principles of Electronic Multimeter, Digital Voltmeter Digital Energy Meter, TOD Meter, Smart Metering, Bidirectional Meters (Description Only)	11
4	Block Schematic of electronic instrumentation system – role of sensors and transducers Classification of Temperature transducers- Principle of operation of Thermistors and RTD Classification of flow transducers- Principle of operation of Electromagnetic and ultrasonic types Strain gauge: Basic working principle, types and applications; Measurement of angular speed and luminous intensity Principles of Digital Data Acquisition systems - Role of Signal conditioning systems (Basic Principles only)- Phasor Measurement Unit (Block Schematic and Description Only) CRO, DSO and Harmonic Analysers: Block Diagram, Basic Principles and	11

applications only	
Virtual Instrumentation Systems: Block schematic and Description only IOT	
and Data analytics for Industrial Process- Case study on Smart Grid	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify various parameters and errors associated with measuring instruments.	K2
CO2	Apply suitable methods for the measurement of current, voltage, power and energy.	К3
CO3	Use suitable methods for the measurement of magnetic quantities, resistance, inductance and capacitance.	K2
CO4	Describe the working principle, selection criteria and applications of various sensors and transducers in relation to measurements systems.	K2
CO5	Explain the operation of digital measurement systems.	K2
CO6	Discuss the applications of modern instrumentation schemes for industrial process	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	3	3	-	-	-	2	-	-	-	-	-	2
CO3	3	3	-	-	-	-	-	-	-	-	-	2
CO4	3	2	-	-	2	-	-	-	-	-	-	2
CO5	3	2	-	-	2	-	-	-	-	-	-	2
CO6	3	2	3	-	3	2	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A course in Electrical and Electronic Measurements & Instrumentation	K. Sawhney	Dhanpat Rai & Co.	2023			
2	A course in Electrical & Electronic Measurement & Instrumentation	J. B. Gupta	S K Kataria & Sons	14 th Ed., 2014			
3	Electrical Measurements & Measuring Instruments	Golding E.W and Widdis	Wheeler Pub.	3 rd Ed.,2011			
4	Electronic Instrumentation	H. S. Kalsi	McGraw Hill, New Delhi	4 th Ed., 2019			
5	Principles of Electrical Measurement	S Tumanski	Taylor & Francis.	2006			
6	Electronic Instrumentation and Measurements	David A Bel	Oxford	3 rd Ed,, 2013			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Electronic Instrumentation and Measurement Techniques	Albert D. Helfrick, Cooper William D	Prentice Hall of India	2016			
2	Basic Electrical Measurements	Stout M.B	Prentice Hall	2012			
3	Electronic Measurements & Instrumentation	Oliver & Cage	McGraw Hill	2017			
4	Doebelin's Measurements Systems	E.O Doebelin and D.N Manik	McGraw Hill Education (India) Pvt. Ltd.	7 th Ed., 2019			
5	Electrical and Electronics Measurements and Instrumentation	P.Purkait, B.Biswas, S.Das and C. Koley	McGraw Hill Education (India) Pvt. Ltd.,	2013			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/108/105/108105153/			
	https://archive.nptel.ac.in/courses/108/108/108108147/			
2	https://archive.nptel.ac.in/courses/108/105/108105153/			
3	https://archive.nptel.ac.in/courses/108/105/108105153/			
4	https://archive.nptel.ac.in/courses/108/108/108108147/			
7	https://archive.nptel.ac.in/courses/106/105/106105166/			

SEMESTER S2

COURSE NAME: ANATOMY AND PHYSIOLOGY FOR BIOMEDICAL ENGINEERING

Course Code	PCBMT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To serve as a foundation course for engineers in health care field.
- 2. To introduce the basic anatomy of the major systems of engineering importance in human body.
- 3. To study the basic physiological concepts of these systems.
- 4. To explore the basic engineering principles related to human physiology

SYLLABUS

Module No.	Syllabus Description			
1	Introduction to Anatomy & Physiology: Definitions, structural & functional organization of human body – cells, tissues, organs & systems, Cell: Basic structure, organelles & their functions. Cell membrane – structure, transport across cell membranes – passive transport (passive diffusion and facilitated diffusion) active transport – primary – Na ⁺ -K ⁺ pump & secondary transport - co transport & counter transport. Skeletal system: functions of skeletal system, Bone – classification & composition, structure of long bone – compact and spongy bone. Joints in human body – classification and possible movements.	11		

nervous system – Brain - structure and functions of each parts, Spinal cord - structure – spinal and cranial nerves, spinal reflex, Brain Stem – basic structure & functions. Peripheral nervous system: Efferent & afferent division. Autonomic nervous system: Sympathetic & Parasympathetic nervous system Special senses –Organ of vision, hearing & equilibrium, taste and smell – structure & basic mechanisms. Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its electrical activity (ECG, Heart rate – normal & abnormal), Heart sounds &	
structure & functions. Peripheral nervous system: Efferent & afferent division. Autonomic nervous system: Sympathetic & Parasympathetic nervous system Special senses –Organ of vision, hearing & equilibrium, taste and smell – structure & basic mechanisms. Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
division. Autonomic nervous system: Sympathetic & Parasympathetic nervous system Special senses –Organ of vision, hearing & equilibrium, taste and smell – structure & basic mechanisms. Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
nervous system Special senses –Organ of vision, hearing & equilibrium, taste and smell – structure & basic mechanisms. Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
nervous system Special senses –Organ of vision, hearing & equilibrium, taste and smell – structure & basic mechanisms. Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
structure & basic mechanisms. Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
Integumentary system (basic structure & function only) Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
Blood - the composition of blood (blood proteins and blood cells & their function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
function), blood groups. Blood clotting. Lymphatic system and its functions. Cardiovascular system - major blood vessels, Heart- structure of heart and its	
Cardiovascular system - major blood vessels, Heart- structure of heart and its	
electrical activity (ECG. Heart rate – normal & abnormal). Heart sounds &	
creetival activity (ECG, ficart face hormal & abhormal), ficart sounds &	
3 murmurs, Stroke volume & cardiac output, blood pressure.	
Circulatory systems-Systemic circulation and pulmonary circulation.	
Respiratory system - structure and organization of organs concerned with	
respiration, structure of lungs, mechanics of respiration, Gaseous exchange,	
Gas transport.	
Muscular System - Types of muscles, Skeletal muscle - levels of	
organization, structure, mechanism of muscle contraction & relaxation.	
Urinary System - Structure and function of organs, kidneys, nephron -	
structure and types, Basic renal processes involved in urine formation,	
4 micturition (definition only)	
Digestive system – Anatomy and Functions of Components of the Digestive	
System - basic digestive processes: motility, secretion, digestion, and	
absorption	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Introduce the functional organization of human body and understand the structure and functions of skeletal system	К2
CO2	Understand the structure and functions of nervous system	К2
CO3	Identify the components of blood and physiology of cardiovascular and respiratory systems	К3
CO4	Interpret the structure and functions of muscular, urinary systems and digestive system.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	-	-	-	2	-	1	-	-	-	2
CO2	-	2	-	-	-	2	-	1	-	-	-	2
CO3	-	2	-	-	-	2	-	1	-	-	-	2
CO4	-	2	-	-	-	2	-	1	-	-	-	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Human Physiology: From Cells to Systems	Laura lee Sherwood	Cengage Learning, USA	9th ed., 2014					
2	Textbook of Medical Physiology	Arthur C. Guyton, John E. Hall	W.B. Saunders Company	10th ed., 2000					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Ross and Wilson: Anatomy and Physiology in Health and Illness	Anne Waugh, Allison Grant	Churchill Livingstone	9th ed., 2001					
2	Essentials of Anatomy and Physiology	Tina Sanders, Dr Valerie Scanlon	F.A. Davis Company	5th ed., 2006					

SEMESTER S2

COURSE NAME: BASIC ANATOMY & PHYSIOLOGY FOR BIOMEDICAL ENGINEERS

Course Code	PCEBT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To serve as a foundation course for engineers in health care field.
- 2. To introduce the basic anatomy of the major systems in human body.
- 3. To analyse and understand the functioning of the major systems.
- 4. To explore the basic engineering principles related to human physiology.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Anatomy & Physiology: Definition & relationship of structural & functional organization of human body. Homeostasis: Body fluids ICF & ECF, fluid compartments in human body, — Homeostatic control System- negative & positive feedback and feed forward mechanisms. Cell: Structure, membrane & Transport mechanisms. RMP - Action potentials — ionic basis of generation - Nernst potential, Goldman Hodgkin Katz equation.	11 hrs
2	Nervous System: General organization - Central nervous system, Cerebrum - Cerebral cortex — motor, sensory, language & association areas - major functions. Basal ganglia, Thalamus & Hypothalamus - functions. Cerebellum, Brain Stem - basic structure	11 hrs

	& functions. Spinal cord - spinal reflex. Neurons – structure & types, Mechanisms of Nerve impulses, Synapses & Neuronal Integration Synaptic potentials – EPSP & IPSP -Neurotransmitters – types Special senses: Organ of vision, hearing & equilibrium, taste and smell – structure & basic mechanisms. Blood: The composition of blood (blood proteins and blood cells & their function), hematocrit, blood groups, blood clotting. Major arteries & veins Lymph and its function. Cardiovascular system: Major blood vessels, Circulatory Systems-	
3	Systemic circulation and pulmonary circulation Heart- structure of heart and its electrical activity, Auto rhythmic cells - cardiac action potentials, cardiac cycle (ECG, Heart rate – normal & abnormal), myocardial ischemia & infraction, atherosclerosis, Heart sounds & murmurs, Stroke volume & cardiac output, blood pressure. Respiratory system: Structure and organization of organs, mechanics of respiration, Basics of gas exchange	11 hrs
4	Skeletal system: functions of skeletal system, Bone – classification & composition- structure of long bone – compact and spongy bone. Types of joints and function. Types of cartilage and function. Muscular System: Organization, Types of muscles - skeletal, cardiac and smooth muscles, mechanism of muscle contraction & relaxation. Urinary System: Structure and function of organs, kidneys- nephron – structure, components, Basic renal processes involved in urine formation, micturition – definition and mechanism	11 hrs

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiarize the functional organization of human body and understand the basic principles of human anatomy & physiology.	K2
CO2	Understand the structure and functions of nervous system and special senses.	K2
CO3	Identify the components of blood and understand the structure and functions of cardiovascular and respiratory systems	K2
CO4	Understand the structure and functions of skeletal, muscular and urinary systems.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table: (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2						2
CO2	3	2				2						2
CO3	3	2				2						2
CO4	3	2				2						2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Human Physiology: From Cells to Systems	Laura lee Sherwood	Cengage Learning, USA	9e/, 2014						
2	Textbook of Medical Physiology	Arthur C. Guyton, John E. Hall	W.B. Saunders Company	10e/ 2000						

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Ross and Wilson: Anatomy and Physiology in Health and Illness	Anne Waugh, Allison Grant	Churchill Livingstone	9e/ 2001					
2	Essentials of Anatomy and Physiology	Tina Sanders, Dr Valerie Scanlon	F.A. Davis Company	5e/ 2006					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						

SEMESTER S2

COURSE NAME: ANATOMY AND PHYSIOLOGY FOR BIOMEDICAL ENGINEERING

Course Code	PCBRT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 hrs 30 Mins
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To serve as a foundation course for engineers in health care field.
- 2. To introduce the basic anatomy of the major systems of engineering importance in human body.
- 3. To study the basic physiological concepts of systems.
- 4. To explore the basic engineering principles related to human physiology.

No.	Syllabus Description								
1 t t s	Importance of Anatomy& Physiology for Biomedical Engineering. Introduction to Anatomy & Physiology: Definitions, structural & functional organization of human body – cells, tissues, organs & systems, Cell: Basic structure, organelles & their functions. Cell membrane – structure, transport across cell membranes – passive transport (passive diffusion and facilitated diffusion) active transport – primary – Na ⁺ -K ⁺ pump & secondary transport - co transport & counter transport. Skeletal system: functions of skeletal system, Bone – classification & composition, structure of long bone– compact and spongy bone. Joints in human body – classification and possible movements.	Hours 11							

	Nervous System: General organization, Neurons – structure & types, Central			
	nervous system - Brain - structure and functions of each parts, Spinal cord -			
	structure - spinal and cranial nerves, spinal reflex, Brain Stem - basic			
	structure & functions. Peripheral nervous system: Efferent & afferent			
2	division. Autonomic nervous system: Sympathetic & Parasympathetic			
	nervous system			
	Special senses –Organ of vision, hearing & equilibrium, taste and smell –			
	structure & basic mechanisms.			
	Integumentary system (basic structure & function only)			
	Blood - the composition of blood (blood proteins and blood cells & their			
	function), blood groups. Blood clotting. Lymphatic system and its functions.			
	Cardiovascular system - major blood vessels, Heart- structure of heart and its			
	electrical activity (ECG, Heart rate – normal & abnormal), Heart sounds &			
3	murmurs, Stroke volume & cardiac output, blood pressure.			
	Circulatory systems-Systemic circulation and pulmonary circulation.			
	Respiratory system - structure and organization of organs concerned with			
	respiration, structure of lungs, mechanics of respiration, Gaseous exchange,			
	Gas transport.			
	Muscular System - Types of muscles, Skeletal muscle-levels of organization,			
	structure, mechanism of muscle contraction & relaxation.			
	Urinary System-Structure and function of organs, kidneys, nephron -			
	structure and types, Basic renal processes involved in urine formation,			
	micturition (definition only)			
4	Digestive system – Anatomy and Functions of Components of the Digestive	11		
	System - basic digestive processes: motility, secretion, digestion, and			
	absorption.			
	Applications of Anatomy & Physiology in medical technology for improving			
	patient care.			
	•			

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Introduce the functional organization of human body and understand the structure and functions of skeletal system	K2			
CO2	CO2 Understand the structure and functions of nervous system.				
CO3	Identify the components of blood and physiology of cardiovascular and respiratory systems	К3			
CO4	Interpret the structure and functions of muscular, urinary systems and digestive system.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	-	-	-	2	-	1	-	-	-	2
CO2	-	2	-	-	-	2	-	1	-	-	-	2
CO3	-	2	-	-	-	2	-	1	-	-	-	2
CO4	-	2	-	-	-	2	-	1	-	-	-	2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Human Physiology: From Cells to Systems	Laura lee Sherwood	Cengage Learning, USA	9th ed., 2014						
2	Textbook of Medical Physiology	Arthur C. Guyton, John E. Hall	W.B. Saunders Company	10th ed., 2000						
3	Ross and Wilson: Anatomy and Physiology in Health and Illness	Anne Waugh, Allison Grant	Churchill Livingstone	9th ed., 2001						

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Essentials of Anatomy and Physiology	Tina Sanders, Dr Valerie Scanlon	F.A. Davis Company	5th ed., 2006
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh & Grant	2022

	Video Links (NPTEL, SWAYAM)				
Modul e No.	Link ID				
1	https://www.skillmd.com/course/anatomy-nptel-video-lessons/, https://www.youtube.com/watch?v=ydZkJzl4IVk,				
2	https://nptel.ac.in/courses/109104029,				
3	http://www.digimat.in/nptel/courses/video/103103133/L01.html, http://www.digimat.in/nptel/courses/video/103103133/L01.html				
4	https://www.youtube.com/watch?v=aIS5aBKsIwk, https://www.youtube.com/watch?v=QjihqB2rHX8,http://acl.digimat.in/nptel/courses/video/102104 058/L57.html				

SEMESTER S2

COURSE NAME: LOGIC CIRCUIT DESIGN

Course Code	PCEIT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	GYEST104 Introduction to Electrical & Electronics Engineering	Course Type	Theory

Course Objectives:

- 1. To understand the number systems in digital systems.
- 2. To introduce the basic postulates of Boolean algebra, digital logic gates and Boolean expressions
- 3. To design and implement combinational and sequential circuits.
- 4. To familiarize different logic families.
- 5. To study the basics of Verilog HDL.

Module No.	Syllabus Description	Contact Hours
1	Digital systems - Binary and hexadecimal number systems, Methods of base conversions, Binary and hexadecimal arithmetic, Representation of signed numbers(1's complement, 2's complement,9's complement, 10's complement forms). Fixed and floating point numbers, decimal codes – BCD, Gray codes, Excess 3 code, ASCII code. Boolean Algebra - Basic definitions and axiomatic definition of Boolean algebra, Basic theorems and properties of Boolean algebra,	11

	De-Morgan's Theorems, Boolean functions, canonical and standard	
	forms, Digital logic gates and their truth table.	
	Minimization of Boolean expressions, Sum of Products (SOP),	
	Product of Sums (POS), Karnaugh map Minimization.	
2	Combinational Logic Systems – Half and full adders, 4 bit ripple carry adder, Subtractors, BCD Adder, Magnitude Comparators, Decoders and Encoders, Multiplexers and Demultiplexer. Basic Introduction to Programmable logic devices (PLD) and FPGA. Verilog HDL – Basic language elements, identifiers and operators. Verilog implementation of logic gates and combinational circuits.	11
3	Latches and Flipflops – SR Latch, SR Flipflop, JK, D and T flipflops, Master slave JK FF, Excitation table and characteristic equation, conversion of flipflops. Registers - Shift registers-SIPO, SISO, PISO, PIPO, Bidirectional. Verilog modeling of flipflops	11
4	Counters- Ripple counter, Mod 10 Counter, Ring counter and Johnsons- Design of Asynchronous and Synchronous counters, Mod N counter, sequence generator. Verilog modelling of asynchronous and synchronous counters. Verilog implementation of sequence generator. Electrical characteristics of TTL and CMOS logic families – logic levels and noise margins, fan-out, propagation delay, transition time, power consumption and power delay product. TTL inverter - circuit description and operation, CMOS inverter - circuit description and operation, CMOS NAND, CMOS NOR.	11

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the elements of digital system abstractions such as digital representations of information, digital logic and Boolean algebra	K2
CO2	Design and implement combinational logic circuits	К3
CO3	Design and implement sequential logic circuits	К3
CO4	Design and implement combinational and sequential logic using Verilog HDL	K4
CO5	Compare different logic families	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	3	3									
CO3	3	3	3									
CO4	3	3	3	2	3							
CO5	3	3										

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Digital Fundamentals	Thomas L. Floyd	Pearson Education	11 th Edition, 2017
2	Introduction to logic circuits and logic design with verilog	Brock J. Lameres	Springer	2 nd Edition, 2019

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D. Ciletti	Pearson Education	6 th Edition, 2018		
2	Digital Design Verilog HDL and Fundamentals	Joseph Cvanagh	CRC Press	1 st Edition, 2008		
3	Fundamentals of digital circuits	Kumar A. Anand	PHI	4 th Edition, 2016		
4	Verilog HDL: A Guide to Digital Design And Synthesis	Samir Palnitkar	Pearson	2 nd Edition, 2003		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/				
2	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/				
3	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/				
4	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/				

SEMESTER S 2
COURSE NAME: BASIC OF INSTRUMENTATION ENGINEERING

Course Code	PCICT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the Fundamentals of Instrumentation and Control Engineering and functional elements of measurement systems.
- 2. Describe about functions of a control system and master Instrument Characteristics.
- 3. Study input-output configuration of instruments and develop Proficiency in Calibration
- 4. Analyse and Mitigate Measurement Errors and measurement noise.

Module No.	Syllabus Description			
1	INTRODUCTION TO INSTRUMENTATION & CONTROL ENGINEERING- Definition-scope and importance- application of instrumentation in different fields like petrochemical, Biomedical, pharmaceutical and food processing. FUNCTIONAL ELEMENTS OF MEASUREMENT SYSTEM: Introduction to instrument systems - Typical applications of instrument systems. Basic description of the functional elements of the measurement system with examples.	12		

	TRANSDUCERS AND INSTRUMENT TYPES: Definition of transducers. Role of transducers in instrumentation. Classification of instruments: Active and passive instruments - Null-type and deflection-type instruments - Analogue and digital instruments - Indicating instruments and instruments with a signal output -Manually operated and automatic type, Self-generating and power operated types, Contacting and non-contacting types - Smart and	
	non-smart instruments FUNCTIONAL ELEMENTS OF CONTROL SYSTEM: Need of Control systems – Role of error detectors – Block diagram for a control system with examples. MEASUREMENT SYSTEM PERFORMANCE: Static characteristics of	
2	instruments. Accuracy and precision, static sensitivity, linearity, hysteresis, threshold, dead time, dead zone, resolution or discrimination. static error, static correction. Scale range and span, reproducibility and drift, repeatability. Dynamic characteristics of instruments. Understating of (1) Zero order instrument (2)First order instrument (3)Second order instrument.	10
3	CALIBRATION OF MEASURING SENSORS AND INSTRUMENTS: Standards and calibration – Necessity of calibration- Careful instrument design, Principles of calibration-Controlofcalibrationenvironment-Calibrationchainandtraceability-Calibrationrecords -Intelligent instruments. TYPES OF INPUTS: Input output configuration of measuring instruments and measurement systems. Desired inputs, interfering inputs, modifying inputs. Methods of correction for interfering and modifying inputs. Loading effects. Input and output impedances. Input impedances, input admittance, output impedances, output admittance.	11
4	MEASUREMENT NOISE :Noise, signal to noise ratio, sources of noise, Johnson noise, power spectrum density. Sources of measurement noise-Inductive coupling-Capacitive (electrostatic) coupling - Noise due to	11

multiple earths-Noise in the form of voltage.

ERRORS DURING THE MEASUREMENT PROCESS: Errors in measurements, true value, Limiting errors (Guarantee errors). Relative (fractional) limiting error. Combination of quantities with limiting errors. Known errors, types of errors, gross errors, systematic errors, instrumental errors, environmental errors, observational errors. Random (residual) errors.

Reduction of systematic errors - Careful instrument design - Method of opposing inputs -Calibration - Manual correction of output reading.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Demonstrate a comprehensive understanding of instrumentation and control engineering principles and the performance characteristics of different types of instruments.	К2	
CO2	Develop a thorough understanding of the static and dynamic characteristics of instruments enabling effective evaluation and utilization of instrumentation in various applications.	К2	
CO3	Attain a deep understanding of the principles of calibration and analysing input-output relationships in measurement systems	К2	
CO4	Demonstrate a comprehensive understanding of noise and errors in measurement.	К2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3											3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Measurements and Instrumentation Principles.	Alan S Morris	Elsevier Butterworth Heinemann	3 rd edition, 2001			
2	A course in Mechanical Measurement and Instrumentation.	A.K Sawhney	Dhanpat Rai & Co.	12 th edition, 2017			
3	Instrumentation Devices & Systems.	C.S. Rangan, G.R. Sarma, V.S.V. Mani,	Tata McGraw- Hill publishing company Ltd.	2017			
4	Mechanical Measurements	S P Venkateshan	Ane Books	2nd edition, 2015			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Measurement systems: Application and design,	Ernest. O Doeblin	McGraw Hill Higher Education	5 th edition, 2003				
2	Transducers and Instrumentation	D V S Murty	Prentice Hall India Learning Private Limited	2nd edition, 2008				

	Video Links (NPTEL, SWAYAM)				
	Link ID				
1	https://nptel.ac.in/courses/108102191				

SEMESTER S2 COURSE NAME: SENSORS AND ACTUATORS

Course Code	PCCPT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Provide a comprehensive understanding of fundamental concepts of sensors and actuators.
- 2. Explore various types of sensors, including mechanical, electromechanical, thermal, inductive, and gas sensors
- **3.** Apply knowledge of actuators in different systems.

Module No.	Syllabus Description	Contact Hours
1	Sensors, Transducers and Actuators: Basics of Energy transformation: Transducers, Sensors and Actuators Principles, Classification, Parameters, and Characteristics, Environmental Parameters (EP), Characterization. Mechanical and Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges	11
2	Inductive Sensors- Sensitivity and Linearity of the Sensor, Types- Capacitive Sensors, Electrostatic Transducer, Force/Stress Sensors using	11

	Quartz Resonators, Ultrasonic Sensors.	
	Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal	
	Expansion Type Thermometric Sensors, Acoustic Temperature	
	Sensor.	
	Introduction – Basic Characteristics – Types of Photosensistors /Photo	
	detectors- X-ray and Nuclear	
	Radiation Sensors– Fiber Optic Sensors	
	Gas sensors: Optical gas sensor, Metal oxide semiconductor gas	
	sensor, Field effect transistor gas sensor, Piezoelectric gas sensor,	
3	Polymer gas sensor, Nano-structured based gas sensors	11
	Design and fabrication process of Microsensors: Force Sensors,	
	Pressure Sensors, Strain gauges and practical applications	
	Working principles of Actuators. Piezoelectric and Piezoresistive	
	actuators, micropumps and micro actuators with practical	
	applications	
4	Pneumatic and Hydraulic Actuation Systems- Actuation systems, Pneumatic	11
	and hydraulic systems, Directional Control valves, Pressure control valves,	
	Cylinders, Servo and proportional control valves, Process control valves,	
	Rotary actuators.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Fundamental Concepts of Sensors and Actuators	K1-Remember
CO2	Understanding Mechanical and Electromechanical Sensors	K2-Understand
CO3	Explaining Thermal and Inductive Sensors	K2-Understand
CO4	Identifying Different Gas Sensors	K2-Understand

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									
CO2	3	2	2									
CO3	3	2	2			1	1					
CO4	3	2	2			1	1					
CO5	3	2	2			1						

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Sensors and Transducers,	D. Patranabis	PHI Learning Private Limited.	Second edition						
2	Mechatronics	W. Bolton	Pearson Education Limited.							
3	Sensors and Actuators: Engineering System Instrumentation	Clarence W. de Silva	CRC Press	2016						

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	MEMS: A Practical Guide to Design, Analysis, and Applications	Jan Korvink and Oliver Paul	Springer	2018					
2	Handbook of Modern Sensors: Physics, Designs, and Applications	Jacob Fraden	Springer	5th edition, 2016					
3	Principles of Measurement Systems	John P. Bentley	Pearson	4th edition, 2005					
4	Piezoelectric Sensors and Actuators: Fundamentals and Applications	Stefan Johann Rupitsch	Springer	2018					

	Video Links (NPTEL, SWAYAM)						
Module No. Link ID							
Module - I https://onlinecourses.nptel.ac.in/noc21_ee32/preview							
Module - IV	https://onlinecourses.nptel.ac.in/noc21_ee32/preview						

SEMESTER S2
COURSE NAME: DIGITAL ELECTRONICS

Course Code	PCERT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30Mins
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- 1. Understand the fundamental building blocks of Digital Electronics and Boolean algebra for manipulating digital information.
- 2. Design digital circuits (combinational and sequential) for processing and storing information.

Module No.	Syllabus Description				
1	Number Systems: Introduction to number systems (decimal, binary, octal, hexadecimal) and their bases - conversion methods between decimal, binary, octal and hexadecimal number systems. Arithmetic - Binary Addition, Binary Multiplication and Binary Division. Addition of BCD, Octal and Hexadecimal numbers. Representing Negative Numbers - Signed Numbers & Complements, Subtraction with Complements (Binary, BCD, Octal and Hexadecimal). Introduction to alternative coding schemes - BCD, Gray codes, and Excess-3 codes.	11			
2	Introduction to Boolean Algebra - Postulates (Idempotence, Commutativity, Associativity, Distributive Property, etc.) and Basic Theorems (like De-Morgan's Theorem), Minimization of Boolean expressions - Canonical and Standard Forms, Karnaugh map Minimization (up to four variables), Don't-Care Conditions. Digital Logic Gates – Implementation of Boolean functions	11			

	(including those simplified using Karnaugh maps) using combinations of basic logic gates & implementation using universal gates.	
3	Combinational and Arithmetic Circuits Combinatorial Logic Systems - Data Encoders and Decoders, Data Selection and Distribution (Mux & Demux), Code Converters, Comparators. Arithmetic Circuits - Half and Full Adder, Half & Full Subtractor, Binary Parallel Adder, BCD Adder.	10
4	Sequential Logic Circuits: Sequential Circuits Fundamentals, Flip-flops - SR, JK, T and D, Conversion of Flipflops, Excitation table and characteristic equation. Asynchronous (Binary and BCD counters) and Synchronous counter design (Binary up, down and up-down counter, BCD counter), timing sequences and state diagrams, Mod N counter. Shift registers - SIPO, SISO, PISO, PIPO, timing sequences and state diagrams. Shift Registers with parallel Load/Shift, Ring counter and Johnson counter	12

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamental concepts of number systems (decimal, binary, octal, hexadecimal) including their bases and conversion techniques.	K2
CO2	Utilize Boolean postulates and theorems to simplify logic expressions and implement circuits using basic logic gates	К3
CO3	Implement combinational logic circuits for data processing and manipulation.	К3
CO4	Describe the operation of different flip-flops and implement basic sequential circuits.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1										2
CO2	3	2	2									2
CO3	3	2	2									2
CO4	3	2	2									2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Design	Mano M.M, Ciletti M.D	Pearson India	4 th Edition, 2006			
2	Digital Fundamentals	Thomas L Floyd, Digital	Pearson Education	10 th Edition , 2009			
3	Modern digital Electronics	R.P. Jain	Tata McGraw Hill,	4 th Edition, 2009			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Principles and Design	Donald D Givone	Tata McGraw Hill	1 st Edition, 2003				
2	Fundamentals of Digital Circuits	A. Ananthakumar	Prentice Hall	2 nd Edition, 2016				
3	Digital Design: Principles and Practices	Wakerly J.F	Pearson India	4 th edition, 2008				
4	Digital Electronics – An introduction to theory and practice	W.H. Gothmann,	РНІ	2 nd Edition,2006				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	NPTEL course : "Digital Circuits and Systems" by Prof. S. Srinivasan, Video Lecture No: 1, Introduction To Digital Circuits (https://nptel.ac.in/courses/117106086)						
2	NPTEL course : "Digital Circuits and Systems" by Prof. S. Srinivasan, Video Lecture No: 7, Logic Minimization Using Karnaugh Maps (https://nptel.ac.in/courses/117106086)						
3	NPTEL course : "Digital Circuits and Systems" by Prof. S. Srinivasan, Video Lecture No: 9, Code Converters (https://nptel.ac.in/courses/117106086)						
4	NPTEL course : "Digital Circuits and Systems" by Prof. S. Srinivasan, Video Lecture No: 20, Up/ Down Counters (https://nptel.ac.in/courses/117106086)						

SEMESTER S2
COURSE NAME: SENSORS AND ACTUATORS FOR ROBOTICS

Course Code	PCRAT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand and discuss the fundamental elementary concepts of Robotics
- 2. Provide insight into different types of robots
- 3. Understand basic laws and phenomena on which sensors operate
- 4. Understand the working principle of different actuators used in robotics.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Robotics and Automation:- laws of robot, brief history of robotics, robotic system components, safety measures in robotics Types of robots: Manipulator, Legged robot, wheeled robot, aerial robots, Industrial robots, humanoids, Cobots, Autonomous robots and Swarm robots, Robotics Applications.	10
2	Transducers and sensors:- Static and Dynamic Characteristics, Classification of sensors, Robotic Sensors Proximity sensor- Eddy current proximity sensor, Inductive Proximity sensor, Capacitive Proximity sensor, Force Sensor, Piezoelectric Sensor, Tactile sensor- Touch Sensor/Contact Sensor. Temperature Sensors: Thermistors, Thermocouples	11

3	Motion sensor: Encoder sensors, LVDT, Accelerometer, gyroscope-working principle only, PIR sensor, Range Sensors: RF beacons, Ultrasonic Ranging, Reflective beacons Optical sensors: Photoconductive cell, photovoltaic, Photo resistive, Photodiodes, Phototransistors, Laser Range Sensor (LIDAR) Special sensors: Acoustic Sensors, vision and imaging sensors, micro and nano sensors.	11
4	Definition, Types, characteristics and selection of Actuators; linear; rotary; cylindrical, Logical and Continuous Actuators, Pneumatic actuator and Electro-Pneumatic actuator; Mechanical actuation systems: Hydraulic actuator - Control valves; applications. Electrical actuating systems: Electric motors as actuators Overview of electric motors. Solid-state switches, Solenoids, - Piezoelectric Actuator.	12

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the significance, social impact and future prospects of robotics and automation in various engineering applications	K2
CO2	Demonstrate the working principle and characteristics of proximity, force and pressure sensors	K2
CO3	Categorize and choose the suitable sensor to measure position, motion, and range of the obstacles	K2
CO4	Describe the working principle of different actuators used in robotics	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1			1		1				1
CO2	2	1	1			1		1				1
CO3	2	1	1			1		1				1
CO4	2	1	1			1	1	1				1

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Sensors and actuators: Engineering system instrumentation	De Silva, Clarence W	CRC Press	2nd edition 2015					
2	Instrumentation: Devices and Systems	Rangan& Mani	McGraw Hill	2nd edition, 2017					
3	Process Control Instrumentation Technology	Curtis D. Johnson	Prentice Hall India	8th edition, 2005					
4	Industrial Robots - Technology, Programming and Applications	Mikell P. Groover et. al	McGraw Hill, Special Edition	2nd edition, 2017					
5	Robotics Technology and flexible automation	S.R. Deb	Tata McGraw-Hill Education	2nd edition, 2017					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Sensor, Actuators and their Interfaces: A Multidisciplinary Introductions. (1st eds)	Ida.N	SciTech, Edison						
2	Fundamentals of robotics – Analysis and control	Robert. J. Schilling	Prentice Hall of India	1996					

SEMESTER S2
COURSE NAME: SENSOR TECHNOLOGY FOR ROBOTICS

Course Code	PCRUT205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand and discuss the fundamental elementary concepts of Robotics.
- 2. Provide insight into different types of robots
- 3. Understand basic laws and phenomena on which sensors operate
- 4. Understand operation of sensors to measure various physical parameters

Module No.	Syllabus Description	Contact Hours
1	Introduction to Robotics and Automation: -laws of robot, brief history of robotics, robotic system components, safety measures in robotics Types of robots: Manipulator, Legged robot, wheeled robot, aerial robots, Industrial robots, humanoids, Cobots, Autonomous robots and Swarm robots, Robotics Applications.	11
2	Transducers and sensors: -Static and Dynamic Characteristics, Classification of sensors, Robotic Sensors Proximity sensor- Eddy current proximity sensor, Inductive Proximity sensor, Capacitive Proximity sensor, Force Sensor, Piezoelectric Sensor, Tactile sensor- Touch Sensor/Contact Sensor.	11

	Temperature Sensors: Thermistors, Thermocouples	
	Motion sensor: Encoder sensors, LVDT, Accelerometer, gyroscope-working	
3	principle only, PIR sensor, Range Sensors: RF beacons, Ultrasonic Ranging,	
	Reflective beacons	
	Optical sensors: Photo conductive cell, photo voltaic, Photo resistive,	
	Photodiodes, Phototransistors, Laser Range Sensor (LIDAR),	
4	Special sensors: Acoustic Sensors, vision and imaging sensors, micro and	
	nano sensors.	

Continuous Internal Evaluation Marks (CIE):

Attenda	nce	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5		15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.		
carrying 3 marks	Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the significance, social impact and future prospects of robotics and automation in various engineering applications	K2
CO2	Demonstrate the working principle and characteristics of proximity, force and pressure sensors	K2
CO3	Categorize and choose the suitable sensor to measure position, motion, and range of the obstacles	K2
CO4	Describe the working principle of optical sensor, vision and imaging sensors and micro sensors	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1			1		1				1
CO2	2	1	1			1		1				1
CO3	2	1	1			1		1				1
CO4	2	1	1			1	1	1				1

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Sensors and actuators: Engineering system instrumentation	De Silva, Clarence W	CRC Press	2nd edition 2015					
2	Instrumentation: Devices and Systems	Rangan& Mani	McGraw Hill	2nd edition, 2017					
3	Process Control Instrumentation Technology	Curtis D. Johnson	Prentice Hall India	8th edition, 2005					
4	Industrial Robots - Technology, Programming and Applications	Mikell P. Groover et. al	McGraw Hill, Special Edition	2nd edition, 2017					
5	Robotics Technology and flexible automation	S.R. Deb	Tata McGraw-Hill Education	2nd edition, 2017					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Sensor, Actuators and their Interfaces: Multidisciplinary Introductions. (1st eds)	Ida.N	SciTech, Edison						
2	Fundamentals of robotics – Analysis and control	Robert. J. Schilling	Prentice Hall of India	1996					