
Module 4
TRANSPOSITION CIPHERS

• These ciphers hide the message by
rearranging the letter order without altering
the actual letters used.

• The cipher text has the same frequency
distribution as the plaintext.

Rail Fence cipher

• The plain text is written as a sequence of
diagonals.

• Then read off as a sequence of rows.

• eg. "meet me after the party“

m e m a t r h p r y

e t e f e t e a t

The encrypted message is

m e m a t r h p r y e t e f e t e a t

• This type of cipher can be attacked easily.

Column transposition

• A more complex scheme is to write the message
in rectangle , row by row, and read the message
column by column.

• Permute the order of the columns.
• The order of the columns then becomes the key

of the algorithm.

• Key: 4 3 1 2 5 6 7

• Plaintext: a t t a c k p

• o s t p o n e

• d u n t i l t

• w o a m x y z

• Cipher text is
TTNAAPTMTSUOAODWCOIXKNLYPETZ

• The transposition cipher can be made more
secure by performing more than one stage of
transposition.

• Key: 4 3 1 2 5 6 7

• Input: t t n a a p t

• m t s u o a o

• d w c o I x k

• n l y p e t z

• The cipher text is

• NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

Product Ciphers

• Ciphers using substitutions or transpositions are
not secure because of language characteristics

• Several ciphers in succession.

– two substitutions make a more complex
substitution

– two transpositions make more complex
transposition

– but a substitution followed by a transposition
makes a new much harder cipher

Block Ciphers

➢Most widely used types of cryptographic
algorithms

➢provide secrecy /authentication services

➢ DES (Data Encryption Standard)

Block vs Stream Ciphers

• A block cipher is one in which a block of

plaintext is treated as a whole and used to

produce a ciphertext block of equal length.

• Typically, a block size of 64 or 128 bits is

used.

• A stream cipher is one that encrypts a digital

data stream one bit or one byte at a time.

• In the ideal case, a one-time pad cipher

would be used in which the key stream (k) is

as long as the plaintext bit stream (p).

Block vs Stream Ciphers

Feistel Cipher Structure

• A block cipher operates on a plaintext block of
n bits to produce a ciphertext block of n bits.

• There are 2npossible different plaintext blocks
and, for the encryption to be reversible (i.e.,
for decryption to be possible), each must
produce a unique ciphertext block.

• Such a transformation is called reversible, or
nonsingular.

General substitution cipher for n=4

• A 4-bit input produces one of 16 possible
input states, which is mapped by the
substitution cipher into a unique one of 16
possible output states, each of which is
represented by 4 cipher text bits.

Encryption Table

Decryption Table

Feistel Cipher

• Feistel proposed the use of a cipher that
alternates substitutions and permutations.

• Substitution: Each plaintext element or group of
elements is uniquely replaced by a corresponding
ciphertext element or group of elements.

• Permutation: A sequence of plaintext elements is
replaced by a permutation of that sequence. That
is, no elements are added or deleted or replaced
in the sequence, rather the order in which the
elements appear in the sequence is changed.

• Feistel’s is a practical application of a proposal
by Claude Shannon to develop a product
cipher that alternates confusion and diffusion
functions

Claude Shannon Substitution-Permutation
Ciphers

➢ Claude Shannon introduced idea of substitution-
permutation (S-P) networks

➢ Basis of modern block ciphers

➢ S-P nets are based on the two primitive
cryptographic operations seen before:

⚫ substitution (S-box)

⚫ permutation (P-box)

➢ provide confusion & diffusion of message & key

Confusion and Diffusion

• Cipher needs to completely obscure statistical
properties of original message.

• A one-time pad does this.
• More practically Shannon suggested combining S

& P elements to obtain:
• diffusion – dissipates statistical structure of

plaintext over bulk of cipher text. This is achieved
by having each plaintext digit affect the value of
many cipher text digits

• confusion – makes relationship between cipher
text and key as complex as possible.

Feistel Cipher Structure

Decryption

• The inputs to the encryption algorithm are a
plaintext block of length 2w bits and a key .

• The plaintext block is divided into two halves,
L0and R0 .

• The two halves of the data pass through rounds
of processing and then combine to produce the
ciphertext block.

• Each round i has as input Li-1 and Ri-1 derived from
the previous round as well as a sub-key Ki

• Ki is derived from the overall key K

• The subkeys Ki are different from K and from each
other.

• All rounds have the same structure.

• A substitution is performed on the left half of the
data.

• This is done by applying a round function F to the right
half of the data and then taking the exclusive-OR of the
output of that function and the left half of the data.

• The round function has the same general structure for
each round but is parameterized by the round subkey
Ki .

• F is a function of right-half block of w bits and
a subkey of y bits, which produces an output
value of length w bits: F(REi, Ki+1).

• Following this substitution, a permutation is
performed that consists of the interchange of
the two halves of the data.

Feistel Cipher Design Parameters

• block size

– increasing size improves security, but slows cipher

– Normally 64

• key size

– increasing size improves security, makes
exhaustive key searching harder, but may slow
down the cipher

– Below 64 bit is inadequate, commonly use 128 bit
key

• number of rounds
– increasing number improves security, but slow

down the cipher
– Typically 16 rounds
• subkey generation
– greater complexity can make analysis harder, but

slows cipher
• round function
– greater complexity can make analysis harder, but

slows cipher

Data Encryption Standard (DES)

• Most widely used block cipher in world

• encrypts 64-bit data using 56-bit key

• it transforms 64-bit i/p in a series of steps in to
a 64-bit o/p

• the same steps with the same keys (in reverse
order) are used to do the decryption.

• DES has become widely used, especially in
financial applications

DES Encryption Overview

• Processing of the plaintext proceeds in three phases.
• 1. The 64-bit plaintext passes through an initial

permutation (IP) that rearranges the bits to produce
the permuted input.

• 2. This is followed by a phase consisting of 16 rounds of
the same function, which involves both permutation
and substitution functions.

• - The output of the last (sixteenth) round consists of 64
bits that are a function of the input plaintext and the
key.

• - The left and right halves of the output are swapped to
produce the pre-output.

• 3. Finally, the pre-output is passed through inverse
permutation (IP-1) to produce the 64-bit ciphertext.

• Initially, the key is passed through a
permutation function.

• - Then, for each of the 16 rounds, a subkey (K
i) is produced by the combination of a left
circular shift and a permutation.

• - The permutation function is the same for
each round, but a different subkey is produced
because of the repeated shifts of the key bits.

Initial Permutation IP

➢The 64 bit plain text passes through an initial
permutation that rearranges the bits to
produce the permuted input.

➢The initial permutation and its inverse are
defined by tables.

64 bit input (M)

Initial permutation IP(M)

Details of Single Round

• The left and right halves of each 64-bit
intermediate value are treated as separate 32-
bit quantities, labeled L (left) and R (right).

• The overall processing at each round can be
summarized in the following formulas:

• Li = Ri–1

• Ri = Li–1  F(Ri–1, Ki)

• The round key Ki is 48 bits.

• The R input is 32 bits. This R input is first
expanded to 48 bits by using a table that
defines a permutation plus an expansion that
involves duplication of 16 of the R bits

• The resulting 48 bits are XORed with Ki.

• This 48-bit result passes through a
substitution function that produces a 32-bit
output, which is permuted as defined by Table

DES Round Structure
(The role of the S-boxes in the function

F)

Substitution Boxes S

• The substitution consists of a set of eight S-boxes, each of
which accepts 6 bits as input and produces 4 bits as output.

• The first and last bits of the input to box form a 2-bit binary
number to select one of four substitutions defined by the four
rows in the table for Si .

• The middle four bits select one of the sixteen columns. The
decimal value in the cell selected by the row and column is
then converted to its 4-bit representation to produce the
output. For example, in S1, for input 011000, the row is 00
(row 0) and the column is 1100 (column 12).The value in row
0, column 12 is 12, so the output is 1100.

KEY GENERATION

• A 64-bit key is used as input to the algorithm.

• The bits of the key are numbered from 1
through 64; every eighth bit is ignored

• The key is first subjected to a permutation
governed by a table labeled Permuted Choice
One.

• The resulting 56-bit key is then treated as two
28-bit quantities, labeled C0 and D0 .

• At each round, Ci-1 and Di-1 are separately
subjected to a circular left shift or (rotation) of
1 or 2 bits, as governed by the Table

• These shifted values serve as input to the next
round.

• They also serve as input to the part labeled
Permuted Choice Two which produces a 48-bit
output that serves as input to the function
F(Ri-1, Ki)

• Plaintext: 0123456789ABCDEF

• Key: 133457799BBCDFF1

• Ciphertext:

• PC1---1111000 0110011 0010101 0101111
0101010 1011001 1001111 0001111

• C0 = 1111000 0110011 0010101 0101111
D0 = 0101010 1011001 1001111 0001111

• C1 = 1110000110011001010101011111
D1 = 1010101011001100111100011110

• PC2

• K1 = 000110 110000 001011 101111 111111
000111 000001 110010

• C2 = 1100001100110010101010111111
D2 = 0101010110011001111000111101

• C3 = 0000110011001010101011111111
D3 = 0101011001100111100011110101

• C4 = 0011001100101010101111111100
D4 = 0101100110011110001111010101

• C5 = 1100110010101010111111110000
D5 = 0110011001111000111101010101

• C6 = 0011001010101011111111000011
D6 = 1001100111100011110101010101

• C7 = 1100101010101111111100001100
D7 = 0110011110001111010101010110

• C8 = 0010101010111111110000110011
D8 = 1001111000111101010101011001

• C9 = 0101010101111111100001100110
D9 = 0011110001111010101010110011

• C10 = 0101010111111110000110011001
D10 = 1111000111101010101011001100

• C11 = 0101011111111000011001100101
D11 = 1100011110101010101100110011

• C12 = 0101111111100001100110010101
D12 = 0001111010101010110011001111

• C13 = 0111111110000110011001010101
D13 = 0111101010101011001100111100

• C14 = 1111111000011001100101010101
D14 = 1110101010101100110011110001

• C15 = 1111100001100110010101010111
D15 = 1010101010110011001111000111

• C16 = 1111000011001100101010101111
D16 = 0101010101100110011110001111

• K2 = 011110 011010 111011 011001 110110 111100 100111
100101
K3 = 010101 011111 110010 001010 010000 101100 111110
011001
K4 = 011100 101010 110111 010110 110110 110011 010100
011101
K5 = 011111 001110 110000 000111 111010 110101 001110
101000
K6 = 011000 111010 010100 111110 010100 000111 101100
101111
K7 = 111011 001000 010010 110111 111101 100001 100010
111100
K8 = 111101 111000 101000 111010 110000 010011 101111
111011

• K9 = 111000 001101 101111 101011 111011 011110 011110
000001
K10 = 101100 011111 001101 000111 101110 100100 011001
001111
K11 = 001000 010101 111111 010011 110111 101101 001110
000110
K12 = 011101 010111 000111 110101 100101 000110 011111
101001
K13 = 100101 111100 010111 010001 111110 101011 101001
000001
K14 = 010111 110100 001110 110111 111100 101110 011100
111010
K15 = 101111 111001 000110 001101 001111 010011 111100
001010
K16 = 110010 110011 110110 001011 000011 100001 011111
110101

• IP-

• M = 0000 0001 0010 0011 0100 0101 0110
0111 1000 1001 1010 1011 1100 1101 1110
1111
IP = 1100 1100 0000 0000 1100 1100 1111
1111 1111 0000 1010 1010 1111 0000 1010
1010

• L0 = 1100 1100 0000 0000 1100 1100 1111 1111
R0 = 1111 0000 1010 1010 1111 0000 1010 1010

• Expansion

• E(R0)=011110 100001 010101 010101 011110
100001 010101 010101

• XOR of K1 And E(R0)

• 011000 010001 011110 111010 100001 100110
010100 100111.

• S Box

• 0101 1100 1000 0010 1011 0101 1001 0111

• Permutation P

• 0010 0011 0100 1010 1010 1001 1011 1011

• R1 = L0 + f(R0 , K1)

• = 1110 1111 0100 1010 0110 0101 0100 0100

• L1 = R0

• L16 = 0100 0011 0100 0010 0011 0010 0011 0100
R16 = 0000 1010 0100 1100 1101 1001 1001 0101

• We reverse the order of these two blocks and apply the
final permutation to

• R16L16 = 00001010 01001100 11011001 10010101
01000011 01000010 00110010 00110100

• IP-1 = 10000101 11101000 00010011 01010100
00001111 00001010 10110100 00000101

• which in hexadecimal format is

• 85E813540F0AB405.

Plain text: (hexadecimal) 0 1 2 3 4 5 6 7 8 9 A B C
D E F

Key: (hexadecimal) 0 1 2 3 4 5 6 7 8 9 A B C D E F

DES Decryption

• Decryption uses the same algorithm as
encryption.

• Use the ciphertext as the input to the DES
algorithm but use the keys Ki in reverse order.

• That is, use K16 on the first iteration, K15 on
the second until K1 which is used on the 16th
and last iteration.

Avalanche Effect

• A desirable property of any encryption algorithm
is that a small change in either the plaintext or
the key should produce a significant change in the
ciphertext.

• In particular, a change in one bit of the plaintext
or one bit of the key should produce a change in
many bits of the ciphertext.

• This is referred to as the avalanche effect.
• If the change were small, this might provide a

way to reduce the size of the plaintext or key
space to be searched.

Strength of DES

Key Size
• With a key length of 56 bits we have 256 = 7.2 x 1016

values.
• Brute force attack is impractical.
Timing Attacks
• A timing attack is one in which information about the

key or the plaintext is obtained by observing how long
it takes a given implementation to perform decryptions
on various cipher texts.

• A timing attack exploits the fact that an encryption or
decryption algorithm often takes slightly different
amounts of time on different inputs.

Cryptanalysis of DES

• Differential cryptanalysis

• Linear cryptanalysis.

Differential Cryptanalysis

• Consider the original plaintext block m to
consist of two halves m0,m1 .

• Each round of DES maps the right-hand input
into the left-hand output and sets the right-
hand output to be a function of the left-hand
input and the subkey for this round.

• So, at each round, only one new 32-bit block
is created. Each new block mi, then the
intermediate message halves are related as

• In differential cryptanalysis, we start with two
messages, m and m’ , with a known XOR
difference ∆m = m m’

• The difference between the intermediate
message halves: ∆mi = mi mi’

+

+

Differential Propagation through Three
Rounds of DES

Differential Cryptanalysis

Linear Cryptanalysis

• For a cipher with n-bit plaintext and ciphertext
blocks and an m -bit key, let the plaintext
block be labeled P[0],……,P[n].

• Cipher text, C[0],…..C[n]

• Key K[0],….K[m]

• The objective of linear cryptanalysis is to find
an effective linear equation of the form:

• The further is from p=0.5, the more effective
the equation.

• Once a proposed relation is determined, the
procedure is to compute the results of the
left-hand side of the preceding equation for a
large number of plaintext–ciphertext pairs.

Advanced Encryption Standard(AES)

• AES is symmetric block cipher intended to
replace DES for commercial applications.

• It uses a 128-bit block size and a key size of
128, 192, or 256 bits.

• AES does not use a Feistel structure. Instead,
each full round consists of four separate
functions: byte substitution, permutation,
arithmetic operations over a finite field, and
XOR with a key.

AES STRUCTURE

• The cipher takes a plaintext block size of 128
bits, or 16 bytes.

• The key length can be 16, 24, or 32bytes (128,
192, or 256 bits).

• The algorithm is referred to as AES-128, AES-
192, or AES-256, depending on the key length.

• The input to the encryption and decryption
algorithms is a single 128-bit block.

• This block is copied into the State array, which
is modified at each stage of encryption or
decryption.

• After the final stage, State is copied to an
output matrix.

• The key is depicted as a square matrix of
bytes.

• This key is then expanded into an array of key
schedule words.

• The first four bytes of a 128-bit plaintext input to
the encryption cipher occupy the first column of
the in matrix, the second four bytes occupy the
second column, and so on.

• Similarly, the first four bytes of the expanded key,
which form a word, occupy the first column of
the w matrix.

• The cipher consists of N rounds, where the
number of rounds depends on the key length: 10
rounds for a 16-byte key, 12 rounds for a 24-byte
key, and 14 rounds for a 32-byte key.

• The first N-1 rounds consist of four distinct
transformation functions: SubBytes, ShiftRows,
MixColumns, and AddRoundKey.

• The final round contains only three
transformations, and there is a initial single
transformation (AddRoundKey) before the first
round, which can be considered Round 0.

• Each transformation takes one or more
4 x 4 matrices as input and produces a
4 x 4 matrix as output.

• The key expansion function generates N + 1
round keys, each of which is a distinct 4 x 4
matrix.

• Each round key serve as one of the inputs to
the AddRoundKey transformation in each
round.

Detailed Structure

1. THE AES structure is not a Feistel structure.In
classic Feistel structure, half of the data block is
used to modify the other half of the data block
and then the halves are swapped.AES instead
processes the entire data block as a single
matrix during each round using substitutions
and permutation.

2. The key that is provided as input is expanded
into an array of forty-four 32-bit words, w[i].
Four distinct words (128 bits) serve as a round
key for each round.

3. Four different stages are used, one of
permutation and three of substitution:

• Substitute bytes: Uses an S-box to perform a
byte-by-byte substitution of the block

• ShiftRows: A simple permutation

• MixColumns: A substitution that makes use of
arithmetic over GF(28)

• AddRoundKey: A simple bitwise XOR of the
current block with a portion of the expanded key

4. The structure is quite simple. For both encryption
and decryption, the cipher begins with an
AddRoundKey stage, followed by nine rounds that
each includes all four stages, followed by a tenth
round of three stages.

5. Only the AddRoundKey stage makes use of the
key. For this reason, the cipher begins and ends
with an AddRoundKey stage. Any other stage,
applied at the beginning or end, is reversible
without knowledge of the key and so would add
no security.

6. The cipher consists of alternating operations
of XOR encryption (AddRoundKey) of a block,
followed by scrambling of the block (the other
three stages), followed by XOR encryption,
and so on.

This scheme is both efficient and highly
secure.

AES TRANSFORMATION FUNCTIONS

• Four transformations are used in AES.

1. Substitute Bytes Transformation

2. ShiftRows Transformation

3. MixColumns Transformation

4. AddRoundKey Transformation

Substitute Bytes Transformation

FORWARD AND INVERSE TRANSFORMATIONS
• The forward substitute byte transformation, called

SubBytes, is a simple table lookup.
• AES defines a 16 x 16 matrix of byte values, called an S-

box , that contains a permutation of all possible 256 8-
bit values.

• Each individual byte of State is mapped into a new
byte in the following way: The leftmost 4 bits of the
byte are used as a row value and the rightmost 4 bits
are used as a column value.

• These row and column values serve as indexes into the
S-box to select a unique 8-bit output value.

Construction of S box

1. Initialize the S-box with the byte values in
ascending sequence row by row. The first row
contains {00},{01},{02},….{0F}; the second
row contains {10},{11},{12},….{1F} etc.; and
so on. Thus, the value of the byte at row y ,
column x is {yx}.

2. Map each byte in the S-box to its
multiplicative inverse in the finite field GF
(28) ;the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists
of 8 bits labeled (b7, b6, b5,….b0). Apply the
following transformation to each bit of each
byte in the S-box:

• ci is the ith bit of c byte with the value [63] ;
that is, (c7 c6 c5 c4 c3 c2 c1 c0) = 01100011

• .

• In ordinary matrix multiplication, each
element in the product matrix is the sum of
products of the elements of one row and one
column.

• In this case, each element in the product
matrix is the bitwise XOR of products of
elements of one row and one column.

• The final addition is a bitwise XOR. The bitwise
XOR is addition in GF(28) .

• The inverse substitute byte transformation,
called InvSubBytes, makes use of the inverse
S-box.

• The inverse transformation is

• where byte , d={05} or 00000101.

ShiftRows Transformation

FORWARD AND INVERSE TRANSFORMATIONS
• The forward shift row transformation, called

ShiftRows.
• The first row of State is not altered. For the

second row, a 1-byte circular left shift is
performed.

• For the third row, a 2-byte circular left shift is
performed.

• For the fourth row, a 3-byte circular left shift is
performed.

Example

• The inverse shift row transformation, called
InvShiftRows, performs the circular shifts in
the opposite direction for each of the last
three rows, with a 1-byte circular right shift
for the second row, and so on.

MixColumns Transformation

FORWARD AND INVERSE TRANSFORMATIONS

• The forward mix column transformation,
called MixColumns, operates on each column
individually.

• Each byte of a column is mapped into a new
value that is a function of all four bytes in that
column.

• The transformation can be defined by the
following matrix multiplication on State.

• Each element in the product matrix is the sum
of products of elements of one row and one
column.

• In this case, the individual additions and
multiplications are performed in GF (28).

• The MixColumns transformation on a single
column of State can be expressed as

• In particular, multiplication of a value by {02})
can be implemented as a 1-bit left shift
followed by a conditional bitwise XOR with
(0001 1011) if the leftmost bit of the original
value (prior to the shift) is 1.

• If the left most bit is 0, perform 1 bit left shift
only.

example

AddRoundKey Transformation

FORWARD AND INVERSE TRANSFORMATIONS

• In the forward add round key transformation,
called AddRoundKey, the 128 bits of State are
bitwise XORed with the 128 bits of the round
key.

• The operation is viewed as a column wise
operation between the 4 bytes of a State
column and one word of the round key.

Example

Single AES round

AES KEY EXPANSION

• The AES key expansion algorithm takes as
input a four-word (16-byte) key and produces
a linear array of 44 words (176 bytes).

• The key is copied into the first four words of
the expanded key.

• The remainder of the expanded key is filled in
four words at a time.

• Rcon[j] = (RC[j], 0, 0, 0)

• Plaintext:
0123456789abcdeffedcba9876543210

• Key:

0f1571c947d9e8590cb7add6af7f6798

Key Words
w0 = 0f 15 71 c9
w1 = 47 d9 e8 59
w2 = 0c b7 ad d6
w3 = af 7f 67 98

Auxiliary Function
RotWord (w3) = 7f 67 98 af = x1
SubWord (x1) = d2 85 46 79 = y1
Rcon (1) = 01 00 00 00
y1 Rcon (1) = d3 85 46 79 = z1+

Tutorial

1. Given the plain text
{000102030405060708090A0B0C0D0E0F} and the key
is {01010101010101010101010101010101},

a. Show the original contents of state, displayed as a 4 x
4 matrix.

b. Show the value of state after initial AddRoundKey.

c. Show the value of state after SubBytes.

d. Show the value of state after ShiftRows.

e. Show the value of state after MixColumns.

Module 5

Public Key Cryptosystem

• One key for encryption and a different but
related key for decryption.

• A cryptographic algorithm that uses two
related keys, a public key and a private key.

• The two keys have the property that deriving
the private key from the public key is
computationally infeasible.

• These algorithms have the following
important characteristic.

1. It is computationally infeasible to determine
the decryption key given only knowledge of
the cryptographic algorithm and the
encryption key.

2. Either of the two related keys can be used for
encryption, with the other used for
decryption.

• A public-key encryption scheme has certain
ingredients.

• Plaintext: This is the readable message or data that is
fed into the algorithm as input.

• Encryption algorithm: The encryption algorithm
performs various transformations on the plaintext.

• Public and private keys: This is a pair of keys that have
been selected so that if one is used for encryption, the
other is used for decryption. The exact transformations
performed by the algorithm depend on the public or
private key that is provided as input.

• Ciphertext: This is the scrambled message
produced as output. It depends on the
plaintext and the key. For a given message,
two different keys will produce two different
ciphertexts.

• Decryption algorithm: This algorithm accepts
the ciphertext and the matching key and
produces the original plaintext.

• The essential steps are the following.
1. Each user generates a pair of keys to be used for the

encryption and decryption of messages.
2. Each user places one of the two keys in a public register

or other accessible file. This is the public key. The
companion key is kept private. Each user maintains a
collection of public keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob
encrypts the message using Alice’s public key.

4. When Alice receives the message, she decrypts it using
her private key. No other recipient can decrypt the
message because only Alice knows Alice’s private key.

Public-Key Cryptosystem: Secrecy

• There is a source A that produces a message in
plaintext, X = [X1, X2, . . . ,XM].

• The message is intended for destination B.

• B generates a related pair of keys: a public
key, PUb, and a private key, PRb.

• PRb is known only to B, whereas PUb is publicly
available and therefore accessible by A.

• With the message X and the encryption key
PUb as input, A forms the ciphertext Y = [Y1,
Y2, . . . , YN]:

• Y = E(PUb, X)

• The intended receiver, in possession of the
matching private key, is able to invert the
transformation:

• X = D(PRb, Y)

Public-Key
Cryptosystem:Authentication

• The use of public-key encryption to provide
authentication:

• Y = E(PRa, X)

• X = D(PUa, Y)

• A prepares a message to B and encrypts it using A’s
private key before transmitting it.

• B can decrypt the message using A’s public key.

• Because the message was encrypted using A’s private
key, only A could have prepared the message.

• Therefore, the entire encrypted message serves as a
digital signature.

• In addition, it is impossible to alter the message
without access to A’s private key, so the message is
authenticated both in terms of source and in terms of
data integrity.

Public-Key
Cryptosystem:Authentication and

Secrecy

• To provide both authentication function and
confidentiality a double use of the public-key
scheme is considered:

• Z = E(PUb, E(PRa, X))

• X = D(PUa, D(PRb, Z))

• In this case, encrypt a message, using the sender’s
private key.

• This provides the digital signature.
• Next, encrypt again, using the receiver’s public key.
• The final ciphertext can be decrypted only by the

intended receiver, who alone has the matching private
key.

• Thus, confidentiality is provided.
• The disadvantage of this approach is that the public-

key algorithm, which is complex, must be exercised
four times rather than two in each communication.

Applications for Public-Key
Cryptosystems

• Public-key systems are characterized by the
use of a cryptographic algorithm with two
keys, one held private and one available
publicly.

• Depending on the application, the sender uses
either the sender’s private key or the
receiver’s public key, or both, to perform some
type of cryptographic function.

• The use of public-key cryptosystems is classified into three
categories

1. Encryption /decryption: The sender encrypts a message with the
recipient’s public key.

2. Digital signature: The sender “signs” a message with its private
key. Signing is achieved by a cryptographic algorithm applied to
the message or to a small block of data that is a function of the
message.

3. Key exchange: Two sides cooperate to exchange a session key.
Several different approaches are possible, involving the private
key(s) of one or both parties.

• Some algorithms are suitable for all three applications, whereas
others can be used only for one or two of these applications.

Requirements for Public-Key
Cryptography

1. It is computationally easy for a party B to
generate a pair (public key PUb, private key
PRb).

2. It is computationally easy for a sender A,
knowing the public key and the message to
be encrypted,M, to generate the
corresponding ciphertext:

C = E(PUb,M)

3. It is computationally easy for the receiver B to
decrypt the resulting ciphertext using the
private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb,M)]

4. It is computationally infeasible for an
adversary, knowing the public key, PUb, to
determine the private key,PRb.

5. It is computationally infeasible for an
adversary, knowing the public key, PUb, and a
ciphertext, C, to recover the original
message,M.

6. (Although useful, is not necessary for all
public-key applications)

The two keys can be applied in either order:

M = D[PUb, E(PRb,M)] = D[PRb, E(PUb,M)]

Trap-door one-way function

• A one-way function is one that maps a
domain into a range such that every function
value has a unique inverse, with the condition
that the calculation of the function is easy,
whereas the calculation of the inverse is
infeasible:

• Easy -- a problem that can be solved in
polynomial time as a function of input length.

• If the length of the input is n bits, then the
time to compute the function is proportional
to na, where a is a fixed constant.

• Such algorithms are said to belong to the
class P.

• A problem is infeasible if the effort to solve it
grows faster than polynomial time as a
function of input size.

• For example, if the length of the input is n bits
and the time to compute the function is
proportional to 2n, the problem is considered
infeasible.

• Trap-door one-way function :- calculate in
one direction and infeasible to calculate in the
other direction unless certain additional
information is known.

• With the additional information the inverse
can be calculated in polynomial time.

• A trapdoor one-way function is a family of
invertible functions fk, such that

RSA Algorithm

• RSA – invented by Ron Rivest, Adi Shamir and Len
Adleman at MIT, in 1977.

• RSA is a block cipher.

• The most widely implemented cipher
(asymmetric)

• Steps in RSA Algorithm are:

1. Key Generation

2. Encryption

3. Decryption

• The RSA scheme is a block cipher in which the
plaintext and ciphertext are integers between 0
and n - 1 for some n.

• A typical size for n is 1024 bits, n is less than 21024

• Plaintext is encrypted in blocks, with each block
having a binary value less than some number n.

• That is, the block size must be less than or equal
to log2 (n); in practice, the block size is i bits,
where 2i < n ≤ 2 i+1

• Both sender and receiver must know the value
of n.

• This is a public-key encryption algorithm with
a public key of PU = {e, n} and a private key of
PR = {d, n}.

• The following requirements must be met:

1. It is possible to find values of e, d, n such that
Med mod n = M for all M < n.

2. It is relatively easy to calculate Me mod n and
Cd mod n for all values of M < n.

3. It is infeasible to determine d given e and n.

• The private key is : {d, n} and public key is: {e,
n}.

• Suppose that user A has published his public
key and that user B wishes to send the
message M to A.

• B calculates: C = Me (mod n) and transmits C
to A.

• On receipt of the cipher text C, user A
decrypts C by calculating: M = Cd (mod n).

• to encrypt a message M using RSA the sender:

- obtains public key of recipient, PU={e,n}

- computes: C=Me mod n , where 0≤M<n

• to decrypt the ciphertext C the owner:

- uses their private key, PR={d,n}

- computes: M=Cd mod n

- The message M must be smaller than the
modulus n

• The relationship between e and d can be
expressed as

• ed mod φ(n) = 1

• where φ(n) is the Euler totient function.

• for p, q prime, φ (pq) = (p - 1)(q - 1).

• RSA Example:
1. Select primes: p =17 & q =11
2. Compute n = pq = 17×11=187
3. Compute φ(n) = (p - 1)(q - 1)=16×10=160
4. Select e such that e is relatively prime to φ(n)=160 and

less than φ(n); we choose e=7
5. Determine d such that d e = 1mod 160 and d < 160
Value is d =23 since 23×7=161= 1×160+1 (e . d = k . φ(n) +

1)
6. Publish public key KU= {e,n} ={7,187}
7. Keep secret private key KR= {d,n}= {23,187}

• Example RSA encryption/decryption is:

given message M = 88 (88<187)

encryption:

C = 887 mod 187 = 11

decryption:

M = 1123 mod 187 = 88

RSA Security

• Four approaches to attacking RSA are:
1. Brute force key search : This involves trying all

possible private keys.
2. Mathematical attacks: There are several

approaches, all equivalent in effort to factoring
the product of two primes.

3. Timing attacks: These depend on the running
time of the decryption algorithm.

4. Chosen ciphertext attacks: This type of attack
exploits properties of the RSA algorithm.

KEY MANAGEMENT

• Key distribution is the function that delivers a key
to two parties who wish to exchange secure
encrypted data.

• Some sort of mechanism or protocol is needed to
provide for the secure distribution of keys.

• Key distribution often involves the use of master
keys, which are infrequently used and are long
lasting, and session keys, which are generated
and distributed for temporary use between two
parties.

• There are actually two different aspects to the
use of public key cryptography in this regard:

– distribution of public keys

– use of public-key encryption to distribute
secret keys

Distribution of Public Keys

• Several techniques are there. All the
techniques can be grouped into the following
groups:

– Public announcement

– Publicly available directory

– Public-key authority

– Public-key certificates

Public Announcement

• users distribute public keys (PU) to recipients
or broadcast to community at large

– eg: Append keys to email messages or post
to news groups or email list

• major weakness is forgery
– anyone can create a key claiming to be someone

else and broadcast it

– until forgery is discovered the forger can
masquerade (pretend) as the claimed user

Uncontrolled Public-Key Distribution

Publicly Available Directory

• Greater security can be obtained by
registering keys with a public directory.

• Maintenance and distribution of the public
directory would have to be the responsibility
of some trusted entity or organization.

• Such a scheme would include the following
elements:

1. The authority maintains a directory with a {name,
public key} entry for each participant.

2. Each participant registers a public key with the
directory authority.

• Registration would have to be in person or by
some form of secure authenticated
communication.

3. A participant may replace the existing key with a
new one at any time.

4. Participants could also access the directory
electronically.

5. Periodically the authority publishes the entire
directory or updates to the directory.

Public-Key Publication

Public-Key Authority

• Stronger security for public-key distribution can
be achieved by providing tighter control over the
distribution of public keys from the directory.

• The scenario assumes that a central authority
maintains a dynamic directory of public keys of all
participants.

• In addition, each participant reliably knows a
public key for the authority, with only the
authority knowing the corresponding private key.

Public-Key Distribution Scenario

• The following steps occur:

1. A sends a time stamped message to the
public-key authority containing a request for
the current public key of B.

2. The authority responds with a message that is
encrypted using the authority's private key,
PRauth.

The message includes the following:

➢B's public key, PUb which A can use to encrypt
messages destined for B.

➢The original request, to enable A to match this
response with the corresponding earlier
request.

➢The original timestamp, so A can determine
that this is not an old message from the
authorit.

3. A stores B's public key and also uses it to
encrypt a message to B containing an
identifier of A (IDA) and a nonce (N1), which is
used to identify this transaction uniquely.

4. B gets A's public key from the authority in the
same manner as A gets B's public key.

• At this point, public keys have been securely
delivered to A and B, and they may begin their
protected exchange.

• However, two additional steps are desirable:

6. B sends a message to A encrypted with PUa
and containing A's nonce (N1) as well as a new
nonce generated by B (N2).

7. A returns N2, encrypted using B's public key,
to assure B that its correspondent is A.

• Thus, a total of seven messages are required.
However, the four messages need be used
only infrequently because both A and B can
save the other's public key for future use, a
technique known as caching

• The directory in the authority is vulnerable to
tampering. The key authority must be trusted.

Public-Key Certificates

• Certificates can be used by participants to
exchange keys without contacting a public-key
authority.

• A certificate consists of a public key plus an
identifier of the key owner, with the whole block
signed by a trusted third party.

• The third party is a certificate authority, such as a
government agency or a financial institution, that
is trusted by the user community.

• A user can present his or her public key to the
authority in a secure manner, and obtain a
certificate.

• The user can then publish the certificate.

• Anyone needed this user's public key can
obtain the certificate and verify that it is valid.

• A participant conveys its key information to
another by transmitting its certificate.

• Following requirements can be placed on this
particular scheme:

1. Any participant can read a certificate to
determine the name and public key of the
certificate’s owner.

2. Any participant can verify that the certificate
originated from the certificate authority and is
not counterfeit.

3. Only the certificate authority can create and
update certificates.

Exchange of Public-Key Certificates

• For participant A, the authority provides a
certificate of the form:

CA = E(PRauth, [T // IDA // PUa])
• where PRauth is the private key used by the

authority and T is a timestamp.
• A may then pass this certificate on to any other

participant, who reads and verifies the certificate
as follows:

• D(PUauth, CA) = D(PUauth, E(PRauth, [T // IDA //
PUa]))

Distribution of Secret Keys using
public key cryptography

• Public-key encryption is more reasonably
viewed as a vehicle for the distribution of
secret keys to be used for conventional
encryption.

Simple Secret-Key Distribution

• An extremely simple scheme put forward by Ralph Merkle
• If A wishes to communicate with B, the following procedure

is employed:
1. A generates a public/private key pair {PUa, PRa} and

transmits a message to B consisting of PUa , and an
identifier of A, IDA.

2. B generates a secret key, Ks, and transmits it to A,
encrypted with A’s public key.

3. A computes D(PRa, E(PUa ,Ks)) to recover the secret key.
Since only A can decrypt the message, only A and B will
know the identity of Ks.

4. A discards PUa and PRa and B discards PUa.

Simple Use of Public-Key Encryption to
Establish a Session Key

• A and B can now securely communicate
encryption and the session keys Ks. At the
completion of the exchange, both A and B discard
Ks.

• No keys exist before the start of the
communication and none exist after the
completion of communication.

• Thus, the risk of compromise of the keys is
minimal. At the same time, the communication is
secure from eavesdropping.

• The protocol is vulnerable to an active attack.
If an opponent, E, has control of the
intervening communications channel, then E
can compromise the communications in the
following way without being detected:

1. A generates a public/private key pair
{PUa,PRa} and transmits a message intended
for B consisting of PUa and identifier of A, IDA

2. E intercepts the message, creates its own
public/private key pair {PUe,PRe} and
transmits PUe // IDA to B.

3. B generates a secret key, Ks, and transmits
E(PUe ,Ks).

4. E intercepts the message, and learns Ks by
computing: D(PRe ,E(PUe ,Ks)).

5. E transmits E(PUa ,Ks) to A.

• The result is that both A and B know Ks and
are unaware that Ks has also been revealed to
E. A and B can now exchange messages using
Ks.

• This method provides confidentiality only.

Secret Key Distribution with
Confidentiality and Authentication:

1. A uses B’s public key to encrypt a message to B
containing an identifier of A (IDA) and a nonce
(N1), which is used to uniquely identify this
transaction.

2. B sends a message to A encrypted with PUa and
containing A’s nonce (N1) as well as a new nonce
generated by B (N2). Since only B could have
decrypted message (1), the presence of N1 in
message (2) assures A that the correspondent is
B.

3. A returns N2, encrypted using B’s public key, to
assure B that its correspondent is A.

4. A selects a secret key Ks and sends M = E(PUb ,
E(PRa ,Ks)) to B. Encryption of this message with
B’s public key ensures that only B can read it,
encryption with A’s private key ensures that only
A could have sent it.

5. B computes D(PUa ,D(PRb , M)) to recover the
secret key.

This scheme ensures both confidentiality and
authentication in the exchange of a secret key.

Public-Key Distribution of Secret Keys

A Hybrid Scheme

• Another way to use public-key encryption to
distribute secret keys is a hybrid approach

• This scheme uses a key distribution centre
(KDC) that shares a secret master key with
each user and distributes secret session keys
encrypted with the master key.

• A public key scheme is used to distribute the
master keys. The following rationale is
provided for using this three level approach.

• Performance

• Distribution of session keys by public-key
encryption could degrade overall system
performance because of the relatively high
computational load of public-key encryption
and decryption.

Backward Compatibility:

• The hybrid scheme is easily overlaid on an
existing KDC scheme, with minimal disruption
of software changes.

• The addition of a public-key layer provides a
secure, efficient means of distributing master
keys.

Module 6

Intruders

Intrusion:

• Entrance by force or without permission

• Any set of actions that attempt to compromise
the integrity, confidentiality or availability of a
resource.

• Either via network or local

Intruder:

• Someone who intrudes on the privacy or
property of another without permission.

Three classes of intruders:
1. Masquerader:
• An unauthorized individual penetrating a system’s access

controls to exploit a legitimate user’s account.
• Mostly an outsider
2. Misfeasor:
• A legitimate user who performs unauthorized accesses to

data, programs, or resources (or who is authorized for such
access but misuses his or her privileges)

• Mostly an insider
3. Clandestine user:
• An individual who seizes supervisory control of the system

and uses it to evade auditing and access controls or to
suppress audit collection

• Either an insider or an outsider

Following are examples of intrusion:

• Performing a remote root compromise of an e-mail
server

• Defacing a Web server

• Guessing and cracking passwords

• Copying a database containing credit card numbers

• Viewing sensitive data, including payroll records and
medical information, without authorization

• Running a packet sniffer on a workstation to capture
usernames and passwords

• Intrusion Techniques

• The objective of the intruder is to gain access to a
system or to increase the range of privileges
accessible on a system.

• This requires the intruder to acquire information
(such as password) that should have been
protected.

• With knowledge of some other user's password,
an intruder can log in to a system and exercise all
the privileges accorded to the legitimate user.

• The password file can be protected in one of two ways:

One-way function:

• The system stores only the resulting value of a function
based on the user's password.

• When the user presents a password, the system
transforms that password and compares it with the
stored value.

Access control:

• Access to the password file is limited to one or a very
few accounts.

• Number of password crackers reports the following
techniques for learning passwords:

1. Try default passwords shipped with systems.
2. Try all short passwords (those of one to three characters).
3. Try words in the system's online dictionary or a list of likely

passwords.
4. Collect information about users, such as their full names.
5. Try users' phone numbers, social security numbers, and

room numbers.
6. Try all legitimate license plate numbers.
7. Use a Trojan horse.
8. Tap the line between a remote user and the host system.

• The first six methods are various ways of
guessing a password.

• The seventh method of attack listed earlier,
the Trojan horse, can be particularly difficult
to counter.

- A low-privilege user (hacker) produced a game
program and invited the system operator to
use it in his or her spare time.

- The program did indeed play a game, but in the
background it also contained code to copy the
password file

- Because the game was running under the
operator’s high-privilege mode, it was able to
gain access to the password file.

• The eighth attack listed, line tapping, is a
matter of physical security.

Intrusion Detection

1. If an intrusion is detected quickly enough,
the intruder can be identified and ejected
from the system before any damage is done
or any data are compromised.

2. Intrusion detection enables the collection of
information about intrusion techniques that
can be used to strengthen the intrusion
prevention facility.

• Intrusion detection is based on the assumption that
the behaviour of the intruder differs from that of a
legitimate user.

• However, there is some overlap between the behaviour
of the intruder and that of a legitimate user.

- A loose interpretation of intruder behaviour will lead to
a number of “false positives” (Authorized users may be
identified as intruders)

- A tight interpretation will lead to an increase in no. of
“false negatives” (Intruders may not be identified as
intruders)

Profiles of Behavior of Intruders and
Authorized Users

Approaches to Intrusion Detection

1. Statistical anomaly detection:
• Involves the collection of data relating to the

behaviour of legitimate users over a period of time.
• Statistical tests are applied to observed behaviour to

determine whether that behaviour is not legitimate
user’s behaviour

a) Threshold detection: This approach involves
defining thresholds for frequency of occurrence of
various events
b) Profile based detection: Profile of the activity of
each user is developed and used to detect changes in
the behaviour of users

2. Rule-based detection:

• Involves an attempt to define a set of rules that
can be used to decide that a given behaviour is
that of an intruder.

a)Anomaly based: Rules are developed to detect
deviation from previous usage patterns.

b)Penetration identification: An expert system
approach that searches for suspicious behaviour.

Audit Records

• A fundamental tool for intrusion detection is the audit
record.

• A record of ongoing activity by users must be maintained as
input to an intrusion detection system. Basically, two plans
are used:

Native Audit Records:
- Virtually all multiuser operating systems include accounting

software that collects information on user activity
- Advantage: No additional collection software is needed
- Disadvantage: The native audit records may not contain the

needed information (or it may not contain information in a
convenient form).

• Detection-specific audit records:

- Audit records containing only that information
required by the intrusion detection system

- Advantage: Can be vendor independent and
ported to a variety of systems.

- Disadvantage: The extra overhead to maintain
two accounting packages on a machine.

Statistical Anomaly Detection

• Compare the current behaviour with the
previous behaviour of legitimate users using
statistical tests. Two types are:

• Threshold detection

• Profile-based detection

• Threshold detection:

• Counting the number of occurrences of a
specific event type over an interval time.

• If the count surpasses the threshold, intrusion
is assumed.

• Threshold detection is a crude and ineffective
detector. So it is used in conjunction with
more sophisticated techniques.

• Profile-based detection:
• Characterize the past behaviour of users and then

detect significant deviations in the current behaviour.
• To characterize the past behaviour, analysis of audit

records is required.
• Useful metrics to analyze the past users’ behaviour

are:
- Counter
- Gauge
- Interval timer
- Resource utilization

• Counter:
• A nonnegative integer that may be incremented but

not decremented until it is reset by management
action.

• Typically, a count of certain event types is kept over a
particular period of time.

Some example events are:
- The number of logins by a single user in an hour.
- The number of times a given command is executed

during a single user session.
- The number of password failures during a minute

• Gauge:
• A non-negative integer that may be incremented

or decremented.
• Typically, a gauge is used to measure the current

value of some entity.
Examples include:
- The number of logical connections assigned to a

user application.
- The number of outgoing messages queued for a

user process.

• Interval time:

• The length of time between two related events.

- An example is the length of time between successive
logins to an account.

• Resource utilization:

• Quantity of resources consumed during a specified
period.

• Examples include:

- The number of pages printed during a user session.

- Total time consumed by a program execution.

Statistical tests

• Various tests can be performed to determine
whether current activity fits within acceptable
limits.

1. Mean and standard deviation

2. Multivariate

3. Markov process

4. Time series

5. Operational

Mean and standard deviation:

• The simplest statistical test is to measure
mean and standard deviation of a parameter
over some historical period.

• This gives a reflection of the average
behaviour and its variability.

• The use of mean and standard deviation is
applicable to a wide variety of counters,
timers, and resource measures.

Multivariate model:

• Based on correlations between two or more
variables.

• Intruder behaviour may be characterized with
greater confidence by considering such
correlations of variables, examples are:

- Processor time and resource usage

- Login frequency and session elapsed time

Markov process model:

• Used to establish transition probabilities
among various states.

- As an example this model might be used to
look at transitions between certain
commands.

Time series model:

• This focuses on time intervals, looking for
sequences of events that happen too rapidly
or too slowly.

• A variety of statistical tests can be applied to
characterize abnormal timing.

Operational model:

• Based on a judgment of what is considered
abnormal, rather than an automated analysis
of past audit records.

• Typically, fixed limits are defined and
intrusion is suspected for an observation that
is outside the limits.

(Eg: A large number of login attempts over a
short period suggests an attempted intrusion)

• The Advantage of the use of statistical anomaly
detection are:

1. The main advantage is that a prior knowledge
of security flaws is not required.

2. The detector program learns what is “normal”
behaviour and then looks for deviations.

3. The approach is not based on system-
dependant characteristics and vulnerabilities.

4. It is readily portable among a variety of systems.

Rule-Based Intrusion Detection

• Rule-based techniques detect intrusion by
observing events in the system and applying a
set of rules that lead to a decision regarding
whether a given pattern of activity is or is not
suspicious.

Two classes are:

• Rule-based anomaly detection

• Rule-based penetration identification

Rule-based anomaly detection

• Analyzes historical audit records and extracts a set of
rules based on previous usage patterns.

• Rules may represent past behaviour patterns of users,
programs, privileges, time slots, terminals, and so on.

• Then matches the current behaviour (observed) against
the set of rules and decide whether the behaviour
deviates from pervious usage patterns or not.

• It does not require the knowledge of security
vulnerabilities within the system.

• In order for this approach to be effective, a rather large
database of rules will be needed. (For example,
anywhere from 104 to 106 rules)

Rule-base penetration identification

• Based on expert system technology.

• Generates rules to identify known penetrations or
feasible penetrations that would exploit known
weakness.

• Typically, the rules are generated by “experts” rather
than by means of an automated analysis of audit
records.

• Experts conducts interview of system administrators
and security analysts to collect known penetration
activities threatening the security of the target system
and generate rules for the penetration activities.

Base-Rate Fallacy

• Practically an intrusion detection system needs to
detect a substantial percentage of intrusions with few
false alarms

– if too few intrusions detected -> the s/m provides false
security

– if too many false alarms -> s/m managers will begin to
ignore alarms or it leads to wastage of time

• It is very difficult to meet high rate of intrusion
detection with a low rate of false alarms.

• In general, if the actual numbers of intrusions is low
compared to the number of legitimate users of a
system, then the false alarm rate will be high unless the
test is extremely discriminating.

Distributed Intrusion Detection

• Until recently, work on intrusion detection
systems focused on single-system stand-alone
facilities.

• However, a typical organization needs to defend a
collection of hosts connected by a network.

• It is possible to mount a defence by using stand-
alone intrusion detection systems on each host.

• A more effective defence can be achieved by
coordination and cooperation among intrusion
detection systems across the network.

• The major issues in the design of a distributed
intruder detection system are:

1. Different audit record formats
- Different systems may use different types of audit

records Integrity and confidentiality of messages
- Audit records may be transmitted across the

network. Integrity is required to prevent an
intruder from masking his activities by altering
the transmitted audit records.

- Confidentiality is required because the transmitted
audit records could be valuable.

2. Either centralized or decentralized
architecture can be used

- With a centralized architecture, there is a
single central point of collection and analysis
of all audit data

- With a decentralized architecture, there are
more than one analysis centres, but these
must coordinate their activities and exchange
information

Distributed Intrusion Detection –
Architecture

• Three main components are:
Host agent module:
- An audit collection module operating as a background

process on a monitored system.
- Collects data on security-related events on the host and

transmit these to the central manager.
LAN monitor agent module:
- Operates in the same fashion as a host agent module except

that it analyzes LAN traffic and reports the results to the
central manager

Central manager module:
- Receives reports from LAN monitor and host agents and

processes and correlates these reports to detect intrusion.

Agent Architecture

Operation procedure

1. The agent captures each audit record produced by the
native audit collection system.

2. A filter retains only security-related records.
• These records are then reformatted into a

standardized format called the host audit record (HAR).
3. A template-driven logic analyzes the records for

suspicious activity.
• The agent scans for notable events that are of interest

independent of any past events.
• The agent looks for anomalous behaviour of an

individual user based on a historical profile of that user
such as number of program executed, number of files
accessed.

4. When suspicious activity is detected, an alert is
sent to the central manager.

• The central manager includes an expert system
that can draw inferences from received data.

• The manager may also query individual systems
for copies of HARs to correlate with those from
other agents.

• The LAN monitor agent also supplies information
to the central manager.

- The LAN monitor agent audits host-host
connections, services used, and volume of traffic.

Honeypots

• Honeypots are systems that are designed to

- Divert an attacker from accessing critical
systems

- Collect information of the attacker’s activity

- Encourage the attacker to stay on the system
long enough for administrators to respond.

Intrusion Detection Exchange Format

• To facilitate the development of distributed
intrusion detection systems certain standards are
needed.

• Such standards are the focus of the IETF Intrusion
Detection Working Group.

• The purpose of the working group are
1. to define data formats and exchange procedures

for sharing information.
2. to management systems that may need to

interact with them.

• The outputs of this working group include:

1. A requirement document which describes the
high-level functional requirements for
communication between intrusion detection
systems.

2. A common intrusion language specification which
describes data formats that satisfy the
requirements.

3. A framework document which identifies existing
protocols best used for communication.

PASSWORD MANAGEMENT

• Password Protection

• Virtually all multiuser systems require that a user
is provided with the following :

o Name or identifier (ID)

o A password.

• The ID provides security in the following ways:

- The ID determines whether the user is authorized
to gain access to a system.

- The ID determines the privileges accorded to the
user.

• The Vulnerability of Passwords:
• Consider a scheme that is widely used on UNIX in

which passwords are never stored in the clear form
• The procedure for storing (loading) password in UNIX

is as given below:
• Each user selects a password up to eight characters.
• This is converted into a 56-bit value (using 7 bit ASCII)

that serves as key input to an encryption routine
known as crypt(3).

• The encryption routine is based on DES.
• The DES algorithm is modified using a 12-bit “salt”

value.
• This value is related to the time at which the password

is assigned to the user.

• The modified DES algorithm is exercised.
• The output of the algorithm then serves as input

for a second encryption.
• This process is repeated for a total of 25

encryptions.
• The resulting 64-bit output is then translated

into an 11-character sequence.
• The hashed password is then stored, together

with a plaintext copy of the salt, in the password
file

• The “salt” serves three purposes:
1. It prevents duplicate passwords from being visible in the

password file.
- Even if two users choose the same password, those
passwords will be assigned at different times. Hence, the
“extended” passwords of the two users will differ (as the
salt value is not the same at different times).

2. It effectively increases the length of the password without
requiring the user to remember additional characters

• - Hence, the number of possible passwords is increased by
a factor of 4096, increasing the difficulty of guessing a
password.

3. It prevents the use of a hardware implementation of DES,
which would ease the difficulty of a brute-force guessing
attack

• The procedure of verifying password employed in UNIX is
given below

1. When a user attempt to log on to a UNIX system, the user
provides an ID and a password

2. The operating system uses the ID
- to index into the password file and
- to retrieve the plaintext salt and the encrypted password
3. The salt and user-supplied password are used as input to

the encryption routine
4. If the result matches the stored value, the password is

accepted

• Access Control:

• One way to thwart a password attack is to
deny the opponent access to the password file

• If the encrypted password portion of the file is
accessible only to a privileged user, then the
opponent can’t read it without knowing the
password of a privileged user

Password Selection strategies

• Many users choose a password that is too
short or too easy to guess.

• If users are assigned passwords of 8 randomly
selected printable characters, password
cracking is effectively impossible

• It would be almost impossible for most users
to remember 8 randomly selected printable
character password.

The Main Goal:
• Eliminating guessable passwords
• Allowing users to select a password that is

memorable
Four basic technique to achieve the goals are in

use:
• User education
• Computer-generated passwords
• Reactive password checking
• Proactive password checking

• User education strategy:

This involves:

• Informing users the importance of using hard-
to-guess password and

• Providing guidelines for selecting strong
password.

Computer-generated passwords:

• If passwords are quite random in nature, it is
difficult to remember for users

• In general, computer-generated password
schemes have a history of poor acceptance

• Reactive password checking strategy:

• The system periodically runs its own password
cracker to find guessable passwords

• The system cancels any passwords that are
guessed and notifies the user.

Proactive password checker:

• The most promising approach to improve
security

• A user is allowed to select his or her own
password

• The system checks to see if the password is
allowable, at the time of selection.

- If not, rejects his/her password

Two problems with this approach are:

• Space - The dictionary must be very large to
be effective, it needs a large space

• Time - The time required to search a large
dictionary may be large.

