
Balancing 

Balancing refers to the act of reducing (or even eliminating) the unbalanced forces and 

couples in a mechanical system. Unbalanced forces prevailing in the system can cause 

vibrations,  noise, ear damage, structural damage, lack of precision and accuracy in the 

machining process etc. 

Static Balancing 

In static balancing only the unbalanced forces are required to be balanced as the masses rotate 

in the same plane. 

 

 

Dynamic Balancing 

In dynamic balancing both the unbalanced forces and couples are required to be balanced as 

the masses rotate in different planes. 

 



 

 

 

 



 

 

 



 

 

 

 



2. A Shaft carries four masses in parallel planes A, B, C, D. The masses at B & C are 18 Kg 

& 12.5 Kg respectively and each has an eccentricity of 60mm.  The masses at A & D have an 

eccentricity of 80mm.  The angle b/w B & C is 1000 & that between the masses B & C is 900 

measured in same direction.  The axial distance between the planes A & B is 100mm & that 

b/w B & C is 200mm.  The shaft is in complete balance determine: 

1. Masses at planes A & D 

2. Distance b/w planer D & A. 

3. Ang. Positions of mass D 

 

 18       12.5 

 

  900   00       1000 

 

         80   60      60   80 

 

  100   200 

 

     x 

 

RP 

 

Balanced Couple Equation. 

MBRBLBSinØB  + MCRCLCSinØC  + MDRDLDSinØD  = 0 

(18 x 60 x 100 x Sin D) + (12.5 x 60 x 300 x Sin 100) + MDRDLDSinØD  = 0 

SinØD X MDRD X  x = -22158174 –  

 

 

MBRBLBCosØB  + MCRCLCCosØC  + MDRDLDCosØD  = 0 

(18 x 60 x 100 x Cos D) + (12.5 x 60 x 300 x Cos 100) + MDRDLDCosØD  = 0 

CosØD X MDRD X  x = -68929.16 -  
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 2 +           2     = (MDRD x)2    = 5.384 x 1010 

        ie; MDRD x x = 232055.374 

   MD x x  = 2900.69  -  

 

 / tanØD   = -221581.74/-68929.16 ; ØD   = 72.720  in 3rd quad 

ie;  ØD  = 180 + 72.72  = 252.72 from+ve X taken CCW 

 

Balanced force eqn; 

MARASinØA +  MBRBSinØB + MCRCSinØC + MDRDSinØD   = 0 

(MA x 80 x  Sin90) + (18 x 60 x SinD) + (12.5 x 60 x Sin 100) + MDRDSinØD   = 0 

80 MA + MDRDSinØD   = 738.6  -  

 MARACosØA +  MBRBCosØB + MCRCCosØC + MDRDCosØD   = 0 

(MARACos90) + (18 x 60 x Cos 0) + (12.5 x 60 x Cos 100) + MDx 80CosØD   = 0 

ie; MD x 80 x Cos (252.72)  = 949.76 

ie; MD = -949.76/(Cos(252.72) x 80) = 39.96Kg. 

Sub MD in          ; 

80MA + 39.96 x 80 x Sin (252.72) = - 738.6 

80MA = 2313.91 

MA  = 2313.91/80   = 28.92Kg 

  Sub MD in          ; 

39.96 x x   = 2900.69 

ie;  x  = 72.58mm 

3. A disturbing mass 600 kg is attached to a shaft. The shaft is rotating at a uniform 

angular velocity of ωrad/sec. and the distance of the C.G. of the disturbing mass from the axis 

of rotation is 270 mm. The disturbing mass is to be balanced by two masses in two 

different planes. The distance of the C.G. of the balancing mass from the axis of rotation 

is 450 mm each. The distance between the two planes of the balancing masses is 1.5 m and 

the distance between the plane of the disturbing mass and one of the planes of the 

balancing masses is 300 mm. Determine (a) the distance between the plane of the disturbing 

mass and the plane of the other balancing mass. (b) the magnitude of the balancing masses 

when (i) the planes of the balancing masses are on the same side of the plane of the disturbing 
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mass. (ii) the planes of the balancing masses are on either side of the plane of the disturbing 

mass. 

 

Case b (i)  (Refer phase plane diagram)  

Taking the plane of m3 as RP, couple equations 

 
 

 

m1 x (0.450) x (-1.5) x ω2 x sin θ1 + 600 x (0.270) x (-1.2) x ω2 x sin θ2 = 0 

m1 x (0.450) x (-1.5) x ω2 x cos θ1+ 600 x (0.270) x (-1.2) x ω2 x cos θ2 = 0 

 

-0.675 m1ω
2  sin θ1– 194.4 ω2sin θ2 =0 

-0.675 m1ω
2cosθ1– 194.4 ω2cos θ2 =0 

 

 

-0.675 m1 sin θ1=194.4 sin θ2 

-0.675 m1cosθ1= 194.4 cos θ2 

 

(-0.675)2(m1)
2 = (194.4)2 

m1= 288 kg 

 

Taking the plane of m1 as RP, couple equations 

 



600 x (0.270) x (0.3) x ω2 x sin θ2 + m3 x (0.450) x (1.5) x ω2 x sin θ3 = 0 

600 x (0.270) x (0.3) x ω2 x cos θ2 + m3 x (0.450) x (1.5) x ω2 x cos θ3 = 0 

 

0.675 m3 ω
2  sin θ3 + 48.6 ω2sin θ2 =0 

0.675 m3 ω
2cos θ3 + 48.6 ω2cos θ2 =0 

 

0.675 m3 sin θ3 = - 48.6 sin θ2 

0.675 m3cos θ3 = -48.6 cos θ2 

 m3= 72 kg 

 

Case b (ii) (Refer phase plane diagram) 

Taking the plane of m3 as RP, couple equations 

 

600 x (0.270) x (-1.8) x ω2 x sin θ2 + m1 x (0.450) x (-1.5) x ω2 x sin θ1 = 0 

600 x (0.270) x (-1.8) x ω2 x cos θ2 + m1 x (0.450) x (-1.5) x ω2 x cosθ1 = 0 

m1 = 432 kg 

Taking the plane of m1 as RP, couple equations 

 

600 x (0.270) x (-0.3) x ω2 x sin θ2 + m3 x (0.450) x (1.5) x ω2 x sin θ3 = 0 

600 x (0.270) x (-0.3) x ω2 x cos θ2 + m3 x (0.450) x (1.5) x ω2 x cos θ3 = 0 

m3= 72 kg 

 

Balancing of Reciprocating mass 

 

Forces to be balanced are mrω2cosθ which is the inertial force (due to reciprocating mass m) acting 

along the L.O.S and centrifugal force due to equivalent revolving mass mREV at crank pin mREVrω2. 

Note that we have excluded the secondary force 
mrω2

𝑛
𝑐𝑜𝑠2θ from balancing. Therefore the 

balancing is referred to as primary balancing. N is the length of the connecting rod (l) to crank radius 

(r) ratio; n=
𝑙

𝑟
  

These unbalanced forces can be balanced by placing a radially opposing counterbalancing mass mb at 

any suitable radius rb with speed of rotation ω as shown below: 



 

The value of mb rb is selected in such a way that mb rb= (cm + mREV)r means mREVrω2 gets cancelled in 

the  radially opposite directions. The remaining part cmrω2 (radially) offers horizontal and vertical 

balancing components as shown below: 

 

So after balancing has been done the net unbalanced force along X axis (LOS) will be  

mrω2cosθ - c mrω2cosθ = (1-c) mrω2cosθ and along vertical direction will be cmrω2sinθ and the 

resultant unbalanced force after partial balancing will be √[(1 − c) mrω2cosθ ]2 + [cmrω2𝑠𝑖𝑛θ]2 

Note that we have effected only a partial balancing of reciprocating mass (m) by a fraction c (c less 

than 1) and therefore the balancing is referred to as partial primary balancing (secondary force being 

neglected) and this acts as a compromise between unbalanced forces in the vertical and horizontal 

directions. 



 

 



 

Effects of Partial balancing in Locomotives 

The effects of partial balancing in locomotives are Variation in traction, Swaying Couple and 

Hammer Blow. (Refer the figure given above) 

 

Variation in Traction 

The unbalanced forces along the lines of stroke of the two cylinders causes variation in 

traction given by 

V= (1-c)mrω2cosθ0 + (1-c)mrω2cos(90 + θ)0 

Max. Value occurs at θ=450 and θ=2250given by 

Vmax = ±√2  (1 − c) mrω2 
 

Swaying Couple 

The unbalanced forces along the lines of stroke of the two cylinders constitute a couple about 

the locomotive central plane called swaying couple which causes the vehicle sway from side 

to side given by 

S=-
𝑥

2
(1-c) mrω2cosθ0 +

𝑥

2
(1-c) mrω2cos (90 + θ)0 

Smax=±
1

√2  
(1 − c) mrω2𝑥 

 

Hammer Blow (HB) 

Hammer blow is the maximum vertical unbalanced forces on the plane of wheels caused by 

the balancing mass placed in the same planes. The tendency is to lift the vehicle of the 

wheels. 

HB =  ±m1r1ω
2 or HB = ±m4r4ω

2 

Limiting speed condition of HB is given by HB = W where W is the dead weight on each 

wheel. 



 

Balancing of V-Engines 

Unbalanced forces in V-Engines 

 

 Therefore the resultant primary unbalanced force in V engines is given by : 

2mrω2√
 

While evaluating the secondary unbalanced forces the angle made by the crank with the line 

of stroke gets doubled and the ratio n features in the denominator 

 

Balancing Procedure in V-engines 

Select the angle of V, 2α = 90 0 . That is α = 450, the resultant primary unbalanced force 

becomes equal to mrω2. This unbalanced force can be treated as a rotating mass m at crank 

radius r (rotating with angular speed ω) and therefore can be balanced by placing a radially 



opposite rotating mass of same speed. Secondary forces are harmonic and smaller in value, 

therefore usually neglected. 

Balancing of Inline engines 

In inline engines the cylinders are arranged in such a way that the lines of stroke of  all 

cylinder assembly are made parallel to each other. To balance the unbalanced force in an 

inline engine, we normally need not add any counter balancing mass externally. But the 

balancing is done by selecting a suitable configuration (lay out) and firing order. This 

selection usually depends upon the number of cylinders. This type of balancing is called 

inherent balancing.See the following example: most of the forces and couples are reduced to 

zero by selecting proper angular positions , masses  and axial distances and not by adding any 

external counter balancing mass.  

 

 

 



 

 



 

Balancing Machines 

A balancing machine is used to indicate whether a component is in balance or not. If it is out 

of balance, then machine must be able to measure the magnitude and location of unbalance. 

Mechanical components whose axial dimensions are small such as gears, pulley, fans and 

impeller require static balancing. Such balancing is often done through a single plane 

balancing machine. One typical static balancing machine is shown in Figure.  

 

When an unbalanced component is mounted on the platform the pendulum tilts. The direction 

of tilt gives the location of unbalance and the angle θ indicates the magnitude of unbalance. 

In the case of axially longer components such as turbine, rotor, armature, etc., the unbalanced 

centrifugal forces result in couples whose effect is to cause the rotor turn over the end. Thus 

the purpose of balancing is to measure the unbalanced couple and to add a new couple of 

same magnitude in the opposite direction. Therefore, balancing of these components require 

both static and dynamic balancing. The most common types of balancing machines are 

discussed below: 

Pivoted Cradle Balancing Machine 



In a pivoted cradle machine the rotor to be corrected is supported on half bearings attached to 

the cradle and is connected to an electric motor as shown: 

 

 

The cradle is mounted on spring-dashpots to provide a single degree of freedom vibration 

system. Often they are made adjustable so that the natural frequency can be tuned to motor 

speed. Further, the cradle is pivoted about two points which can be adjusted to coincide with 

the plane of correction. The amplitude of vibration is measured through transducers mounted 

at each end. In the test run, the pivots are positioned at the plane of correction. One pivot is 

locked and other is kept free. When the rotor rotates, its amplitude of vibration is measured. 

The readings obtained will be completely independent of the measurement taken at the other 

correction plane because an unbalance in the plane of locked pivot will have no moment 

about that pivot. The measured amplitude of vibration and amount of unbalance are related 

by the following relation: 

 

where m0e = magnitude of unbalance, X is the amplitude of vibration at correction plane and 

r = ratio of forcing frequency to the natural frequency (ω/ ωn) The angular position of 

unbalance is determined by measuring the angular phase difference between a standard sine 

wave and the wave generated by one of the amplitude transducer. Nowadays, electronic 

phase meter is attached to measure the phase angle. 


