Reg No.:	Name:
110	1 tullic

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: EC306

Course Name: Antenna & Wave Propagation			
Max. Marks: 100 Duration: 3 Hours			
	PART A Answer any two full questions, each carries 15 marks Marks		
1	a)	Define beam solid angle and directivity of an antenna	9
	b)	Draw the equivalent circuit of a receiver antenna	6
2	a)	Derive expression for far field pattern of a half wave dipole antenna and find position of Nulls and BWFN.	10
	b)	Explain any one method of gain measurement of an antenna	5
3	a	A transmitter antenna transmits 10watt power at 100Mhz with efficiency 80%.	
		The gain of the transmitter antenna is 3. The receiver antenna is at a distance 5km	8
		from transmitter which is identical to transmitter. The effective length of receiver	
		antenna is 0.3λ. Calculate	
		a) The power density at the receiver antenna	
		b) Electric field intensity at the receiver antenna.	
		c) The power received by the receiver antenna.	
		d) The voltage induced at the input terminal of the antenna	
	b	Explain the concept of retarded potential	7
4		Plot the radiation pattern of a 4 element linear broadside array with isotropic point	15
		sources with spacing $d = \frac{\lambda}{4}$. Find BWFN of the array,	
5	a)	With necessary equations explain the principle of beam steering	10
	b)	Explain binomial array	5
6	a)	Explain the working of a rhombic antenna	10
	b)	Explain the principle of pattern multiplication	5

7		Explain rectangular micro strip patch antenna and explain its design steps.	20
8		Derive expression for effective refractive index, critical frequency, maximum	
		usable frequency and skip distance (assuming flat earth's surface) for sky wave	20
		propagation	
9	a)	Explain normal mode and axial mode helical antenna	(10)
	b)	Derive expression for line of sight distance for space wave propagation	(10)
		assuming effective radius of earth,	

Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

		SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019 Course Code: EC306	
		Course Name: Antenna & Wave Propagation	
M	ax. N	Tarks: 100 Duration: 3	Hours
		PART A Answer any two full questions, each carries 15 marks	Marks
1	a)	Define Radiation resistance, HPBW, and effective length of an antenna	(7)
	b)	Derive the expressions for far field pattern Electric and Magnetic fields of a short dipole	(8)
		excited with constant current. Derive expression for directivity of the short dipole	
		antenna.	
2	a)	Explain antenna temperature.	(8)
	b)	Derive reciprocity theorem for antennas.	(7)
3	a)	Explain the procedure involved in the radiation gain measurement of antenna	(8)
	b)	Explain how the input impedance of an antenna is measured.	(7)
		PART B	
		Answer any two full questions, each carries 15 marks	
4		Derive expression for array factor of N isotropic sources for end-fire array. Derive	15
		expression for major lobe, minor lobes and Nulls of the array.	
5		a)Design a 5 element Dolph-Chebyshev array with peak side lobe level 19.5dB	(10)
		b) Explain the working of V antenna	(5)
6	a)	Explain the working of a parabolic dish antenna. Write down the expression for gain, HPBW and BWFN	(7)
	b)	Explain the working of a rhombic antenna and it uses.	(8)
		PART C	
		Answer any two full questions, each carries 20 marks	
7	(a)	Explain the working of a log periodic dipole array and explain it's design steps.	(15)
	b)	Explain ground wave propagation	(5)
8	a)	Explain axial mode helical antenna. Write down the expression for gain ,HPBW,BWFN	(12)
		and radiation resistance of axial mode helical antenna.	
	b)	Neglecting the effect of earth's magnetic field derive expression for refractive index of ionosphere.	(8)
9		Derive expression for line of sight distance and received field strength for space wave	(20)
		propagation	

C

Pages: 2

Reg No.:	Name:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech degree examinations (S), September 2020

Course Code: EC306

		Course Name: Antenna & Wave Propagation	
M	ax. N	Marks: 100 Duration: 3	Hour
		PART A Answer any two full questions, each carries 15 marks	Mark
1	(ه	With a neat diagram of the experimental setup, explain how radiation pattern	(10)
1	a)	measurement of anantenna is carried out.	(10)
	b)		(5)
•	b)	Explain antenna field zones	(5)
2	a)	Derive expressions for the Far Field components and Radiation Resistance of a	(12)
		short dipole antenna.	
	b)	Calculate the effective aperture of a short dipole antenna operating at 100 MHz.	(3)
3	a)	State and Prove Reciprocity Theorem.	(7)
	b)	The radiation intensity of the major lobe of an antenna is represented by	(8)
		$U = A_0 \cos\theta$, $0 < \theta < \frac{\pi}{2}$, $0 < \Phi < 2\pi$	
		Find the maximum directivity?	
		PART B	
		Answer any two full questions, each carries 15 marks	
4	a)	Explain the working of a rhombic antenna and its applications.	(8)
	b)	Explain the working of V antenna.	(7)
5	a)	Design a Dolph –Tschebyscheff array of 10 elements with spacing of $d = \lambda/2$	(15)
		between the elements and major to minor lobe ratio is 26 dB.	
6	a)	Derive expression for directions of pattern maxima, pattern minima and HPBW	(10)
		for a endfire array of 'n' elements.	
	b)	With neat diagrams explain the principle of operation of a Horn antenna.	(5)
		PART C	
7	a)	Answer any two full questions, each carries 20 marks With detailed diagrams explain the structure and modes of operation of helical	(12)
		antenna.	
	b)	Explain duct propagation.	(8)
8	a)	Define Critical frequency and Maximum usable frequency.	(5)

03000EC306052001

- b) With the help of neat diagrams explain the principle of operation of Log (10) PeriodicAntenna.
- c) Explain Tropospheric scatter propagation. (5)
- 9 a) Design a rectangular microstrip antenna using a dielectric substrate with (15) dielectric constant of 2.2, h = 0.1588 cm so as to resonate at 10 GHz.
 - b) What is fading. Explain the diversity techniques adopted in wave propagation. (5)
