

EC333 Digital Signal Processing Lab

LABORATORY MANUAL

VISION

 To nurture the talents of electronics and communication engineers, making them highly

competent for growth of the society.

MISSION

 To deliver excellence in teaching - learning process.

 Promote safe, orderly, caring and supportive environment to learners.

 Development of skilled engineers to perform innovative Research for betterment of the

society.

 To encourage industry - institute interaction, career advancement, innovation and

entrepreneurship development.

PROGRAM EDUCATIONAL OUTCOME (PEO)

PEO1: To acquire a strong foundation in mathematics and scientific fundamentals, to develop

an ability to analyze various functional elements of different disciplines of electronics

and communication engineering.

PEO2: Develop technical competence to move in pace with rapid changes in technology.

PEO3: Equip learners to strengthen knowledge and soft skills for carrier advancement.

PEO4: Adhere to ethics to contribute for betterment of the society.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1. To understand principles and applications of various electronic components/devices and

circuits.

PSO2. Enable learners to solve complex problems using modern hardware and software tools.

COURSE

CODE
COURSE NAME L-T-P-C

YEAR OF

INTRODUCTION

EC333 Digital Signal Processing Lab 0-0-3-1 2015

Prerequisite:

EC 213 Electronics Design Automation Lab, EC 202 Signals & Systems

Course objectives:

 Enable the students to explore the concepts of design, simulation and implementation

of various systems using MATLAB/SciLab/OCTAVE and DSP kit.

List of Experiments:

Part A: Experiments on Digital Signal Processor/ DSP kits: (All experiments are

mandatory)

1. Generation of sine wave and standard test signals.

2. Convolution : Linear and Circular
3. Real Time FIR Filter implementation (Low-pass, High-pass and Band-pass) by

inputting a signal from the signal generator.

4. Real Time IIR Filter implementation (Low-pass, High-pass and Band-pass) by

inputting a signal from the signal generator.

5. Sampling of analog signal and study of aliasing.

Part B: Experiments based on MATLAB/SciLab/OCTAVE (7 experiments are

mandatory)

1. Generation of Waveforms (Continuous and Discrete)

2. Verification of Sampling Theorem.

3. Time and Frequency Response of LTI systems (First and second order).
4. Linear Convolution, Circular Convolution and Linear Convolution using Circular

Convolution.

5. To find the DFT and IDFT for the given input sequence.

6. Linear convolution using DFT (Overlap-add and Overlap-Save methods).

7. To find the DCT and IDCT for the given input sequence.

8. To find FFT and IFFT for the given input sequence.

9. FIR and IIR filter design using Filter Design Toolbox.

10. FIR Filter (Low-pass, High-pass and Band-pass) design (Window method).

11. IIR Filter (Low-pass, High-pass and Band-pass) design (Butterworth and Chebychev).

12. Generation of AM, FM & PWM waveforms and their spectrum.

13. Generation of DTMF signal.

14. Study of sampling rate conversion (Decimation, Interpolation, Rational factor).

15. Filtering of noisy signals

16. Implementation of simple algorithms in audio processing (delay, reverb, flange etc.).
17. Implementation of simple algorithms in image processing (detection, de-noising,

filtering etc.)

Expected outcome:

The student should able to: Design, Simulate and realize various systems related to DSP.

COURSE OUTCOME

CO-PO MAPPING

C308.1 Students will be able to Simulate various waveform generations

C308.2 Students will be able to Simulate and realize DFT and IDFT

C308.3 Students will be able to simulate and realize IIR Filters

C308.4 Students will be able to simulate and realize FIR Filters

CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

C308.1 1 2 2 1 - 2 - - - - - - 2 -

C308.2 2 2 2 2 - 1 - - - - - - 1 -

C308.3 3 2 2 3 - 1 - - - - - - 2 2

C308.4 3 2 2 2 - - - - - - - - 3 -

C308.1 2.25 2 2 2 - 1 - - - - - - 2 0.5

LIST OF EXPERIMENTS

Cycle 1: Experiments based on MATLAB

1. Waveform generation

2. DFT and IDFT

3. Convolution and Deconvolution

4. Convolution and Deconvolution using DFT

5. FIR filter design using Hanning , Hamming, Kaiser window

6. Butterworth Filter

7. Chebychev filter

Cycle 2: Experiments based on digital Signal Processor/DSP kit

1. Generation of Sine wave

2. Convolution

3. Real time filter Implementation

 Department of ECE,ICET

INDEX

PART A : Experiments on DSP Kit

1 TMS320C50 Architecture Overview 1

2 Generation of Sine Wave & Standard Test Signals 7

3 Convolution: Linear & Circular 10

4 Implementation of FIR Filter 14

5 Implementation of IIR Filter 17

6 Sampling of Analog Signal 19

PART B : Experiments based on MATLAB

7 Familiarization of MATLAB 21

8 Generation of Waveforms 27

9 Verification of Sampling Theorem 33

10 AM & FM Generation 35

11 Linear& Circular Convolution 42

12 DFT & IDFT 47

13 IIR Filter Design-Butterworth & Chebychev 50

14 FIR Filter -Window Method 62

EC333 Digital Signal Processing Lab 1

 Department of ECE,ICET

TMS320C50 Architecture Overview

1. INTRODUCTION

It is needless to say that in order to utilize the full feature of the DSP

chipTMS320C50, the DSP engineer must have a complete knowledge of the DSP device.

This chapter is an introduction to the hardware aspects of the TMS320C50. The important

units of TMS320C50 are discussed.

2. THE DSP CHIP TMS320C50

The TMS320C50 is a 16-bit fixed point digital signal processor that combines the

flexibility of a high speed controller with the numerical capability of an array processor,

thereby offering an inexpensive alternative to multichip bit-slice processors. The highly

paralleled architecture and efficient instruction set provide speed and flexibility capable of

executing 10 MIPS (Million Instructions per Second). The TMS320C50 optimizes speed by

implementing functions in hardware that other processors implement through microcode or

software. This hardware intensive approach provides the design engineer with processing

power previously unavailable on a single chip. The TMS320C50 is the third generation digit l

signal processor in the TMS320 family. Its powerful instruction set, inherent flexibility, high

speed number crunching capabilities, and innovative architecture have made this high-

performance, cost-effective processor the ideal solution to many telecommunications,

computer, commercial, industrial, and military applications.

3. KEY FEATURES OF TMS320C50

The key features of the Digital Signal Processor TMS320C50 are:

 35-/50-ns single-cycle fixed-point instruction execution time (28.6/20 MIPS)

 Upward source-code compatible with all `C1X and `C2x devices

 RAM-based memory operation (`C50)

 9K x 16-bit single-cycle on-chip program/data RAM (`C50)

 2K x 16-bit single-cycle on-chip boot ROM (`C50)

 1056 x 16-bit dual-access on-chip data RAM

 224K x 16-bit maximum addressable external memory space (64K program, 64Kdata,

64K I/O, and 32K global)

EC333 Digital Signal Processing Lab 2

 Department of ECE,ICET

 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and 32-bitaccumulator

buffer (ACCB)

 16-bit parallel logic unit (PLU)

 16 x 16-bit parallel multiplier with a 32-bit product capability.

 Single-cycle multiply/accumulate instructions

 Eight auxiliary registers with a dedicated auxiliary register arithmetic unit for indirect

addressing.

 Eleven context-switch registers (shadow registers) for storing strategic CPU

controlled registers during an interrupt service routine

 Eight-level hardware stack

 0- to 16-bit left and right data barrel-shifters and a 64-bit incremental data shifter

 Two indirectly addressed circular buffers for circular addressing

 Single-instruction repeat and block repeat operations for program code

 Block memory move instructions for better program/data management

 Full-duplex synchronous serial port for direct communication between the `C5x and

another serial device

 Time-division multiple-access (TDM) serial port

 Interval timer with period, control, and counter registers for software reset

 64K parallel I/O ports, 16 of which are memory mapped

 Sixteen software programmable wait memory spaces.

4. ARCHITECTURE

A detailed architectural block diagram of TMS320C50 is illustrated in figure 1-1. The

TMS320C50 utilizes a modified Harvard architecture for speed and flexibility. In a strict

Harvard architecture, program and data memory are in two separate spaces, permitting a full

TMS320 family's modification of the Harvard program and data spaces, thereby increasing

the flexibility modification permits coefficients stored in program memory to be read into

RAM, eliminating the need for a separate coefficient ROM. It also makes available

immediate instructions and subroutines based on computed values

.

EC333 Digital Signal Processing Lab 3

 Department of ECE,ICET

Figure 1.1 TMS320C50 Block Diagram

 32-Bit Accumulator:

The TMS320C50 contains a 32 double-precision, two's complement arithmetic. The

ALU is a general purpose arithmetic unit that operates on 16 from immediate instructions. In

addition to the usual can perform Boolean operations, pro high-speed controller. The

accumulator stores the output from the ALU and an input to the ALU. Its word length is 32

high order word (bits 31 through 16) and a provided for storing and loading the high and

lower order accumulator words to memory.

 16 x 16-Bit Parallel Multiplier

The multiplier performs a 16 x 16 32-bit result in a single instruction cycle. The

multiplier consists of three units: the T-Register, P-Register, and multiplier array. The 16-bit

T-Register temporarily stores the multiplicand and the P-Register stores the 32-bit product.

Multiplier values either come from the data memory or are derived immediately from the

MPY (multiply immediate) instruction word. The fast on-chip multiplier allows the device to

perform fundamental operations such as convolution, correlation, and filtering. Two

multiply/accumulate instructions in the instruction set fully utilize the computational

bandwidth of the multiplier, allowing both operands to be processed simultaneously.

EC333 Digital Signal Processing Lab 4

 Department of ECE,ICET

 Shifters

A 16-bit scaling shifter is available at the accumulator input. This shifter produces a

left shift of 0 to 16-bits on the input data to accumulator. TMS320C50 also contains a shifter

at the accumulator output. This shifter provides a left shift of 0 to 7, on the data from either

the ACCH or ACCL register, right, before transferring the product to accumulator.

 Data and Program Memory

Since the TMS320C50 uses Harvard architecture, data and program memory reside in

two separate spaces. Additionally TMS320C50 has one more memory space called I/O

memory space. The total memory capacity of TMS320C50 is 64KW each of Program, Data

and I/O memory. The 64KW of data memory is divided into 512 pages with each page

containing 128 words. Only one page can be active at a time. One data page selection is done

by setting data page pointer. TMS320C50 has 1056 words of dual access on chip data RAM

and 9K words of single access Data/Program RAM. The 1056 words of on chip data memory

is divided as three blocks B0, B1 &B2, of which B0 can be configured as program or data

RAM. Out of the 64KW of total program memory, TMS320C50 has 2K words of on-chip

program ROM. The TMS320C50 offers two modes of operation defined by the state of the

MC/MP pin: the microcomputer mode (MC/MP = 1) or the microprocessor mode (MC/MP =

0). In the microcomputer mode, on-chip ROM is mapped into the memory space with upto

2K words of memory available. In the microprocessor mode all 64K words of program

memory are external.

 Interrupts and Subroutines:

The TMS320C50 has three external maskable user interrupts available for external

devices that interrupt the processor. The TMS320C50 contains an eight-level hardware stack

for saving the contents of the program counter during interrupts and subroutine calls.

Instructions are available for saving the device's complete context. PUSH and POP

instructions permit a level of nesting restricted only by the amount of available RAM.

 Serial Port:

A full-duplex on-chip serial port provides direct communication with serial devices

such as codecs, serial A/D converters and other serial systems. The interface signals are

compatible with codecs and many others serial devices with a minimum of external hardware.

EC333 Digital Signal Processing Lab 5

 Department of ECE,ICET

 Input and Output:

The 16-bit parallel data bus can be utilized to perform I/O functions in twocycles. The

I/O ports are addressed by the four LSBs on the address lines, allowing 16 input and 16

output ports. In addition, polling input for bit test and jump operations (BIO) and three

interrupt pins (INT0 - INT2) have been incorporated for multitasking.

SOFTWARE OVERVIEW

This section illustrates the use of program and execution mainly in the standalone

mode. The Micro-50 EB has 3 software development tools namely

1. Standalone Mode

2. Monitor program

3. Serial Mode

In "Standalone Mode" the Micro-50 EB works with a 104 keys keyboard and16x2

LCD display and line assembler. With this configuration, the student can enter his program

through the keyboard and edit and display it on the LCD display. The user can enter the

Mnemonics using the Line Assembler, and debug the program to run it on Micro-50

EB."Monitor Program" is used to enter data directly into Data or Program memory, display

the data etc. It has several commands to enter the user program, for editing and debugging. In

"Serial Mode", it works with an IBM PC computer and program entry and debugging is done

at the PC level.

PROGRAM & EXECUTION:

1. Serial Monitor Mode:

Connect the serial monitor cable from Serial port of Micro-50 EB kit to the serial port

COM1 or COM2 of PC XT/AT (prefer COM1 for default selection). Now execute

communication software (XTALK.EXE) in PC. Power on the Micro-50 EB Kit with all its set

up ready and enter the followingcommand at the prompt.

Press the enter key to enter into serial monitor mode and the screen displays the following

Message

EC333 Digital Signal Processing Lab 6

 Department of ECE,ICET

Now the following menu will appear on the monitor.

Micro-50 EB Serial Monitor, Ver.1.0

(C) Copyright 1996 by Vi Microsystems (P) Ltd. Chennai.

Now enter "HE" to view the help menu of the serial monitor. To assemble the program given

in the example enter "AS" at the prompt and press the Enter Key, the screen displays the

following message.

#Micro-50 EB Line Assembler, Version 2.0

Enter Address:

Now enter the program memory starting address "C000H" and press Enter Key. Now the

screen display next consequent message as

C000H

Enter the mnemonics of the program sequentially viewing opcodes of the respective

mnemonics after pressing enter key. On completion of assembling enter dot (.) and press the

enter key to come out to prompt.

To execute the program use the command "GO C000" and press the Enter Key, where C000

is program memory starting address. To abort the execution, press the reset switch once to

reset the Micro-50 Kit. Now enter "SM" in Micro-50 EB trainer to re-enter into serial mode.

To verify the execution, dump the data memory from 8000H to 9000H using "DD"

command. This operation is same as Line assembler in standalone mode.

Note:

1. At any occasion to abort the serial monitor from the execution of theprogram press the

reset switch of Micro-50 EB kit.

2. To quit of serial monitor mode enter "QU" at the prompt and press enterkey.

EC333 Digital Signal Processing Lab 7

 Department of ECE,ICET

Exp No 1

Generation of Sine Wave & Standard Test Signals

AIM

To generate different wave forms by using TMS320C50 DSP processor.

APPARATUS REQUIRED

TMS320C50 DSP processor kit, PC, CRO with probe.

PROCEDURE

1. Start the program.

2. Load the amplitude of the input signal of 5 volts.

3. Load the frequency of the input signal.

4. Observe the waveform by using CRO.

5. Stop the program.

PROGRAM

a) Program for Generation of Sine Waveform

TXD .SET 0H

STS .SET 1H

DATA .SET 2H

TEMP .SET 3H

B3 .SET 0F000H

B2 .SET 0F00H

B1 .SET 00F0H

B0 .SET 000FH

.MMREGS

.TEXT

START:

LDP #100H

LACC #TABLE

SACL TEMP

REP1:

LACC #TABLE

SACL TEMP

LAR AR0, #372

REP:

LACC TEMP

EC333 Digital Signal Processing Lab 8

 Department of ECE,ICET

TBLR DATA

OUT DATA, 04H

LACC TEMP

ADD #1H

SACL TEMP

MAR *, AR0

BANZ REP,*-

B REP1

HLT: B HLT

b) Program for Generation of Square Waveform

.MMREGS

.TEXT

START: LDP #100H

LACC #0FFFH ; change this value for amplitude.

LOOP: SACL 0

RPT #0FFH ; change this value for frequency.

OUT 0,04H ; address for DAC.

CMPL

B LOOP

.END

c) Program for Generation of Sawtooth Waveform

.MMREGS

.TEXT

START: LDP #120H

LACC #0H ; change lower amplitude

SACL 0

LOOP: LACC 0

OUT 0,04H

ADD #05h ; change frequency

SACL 0

SUB #0FFFh ; change upper amplitude

BCND LOOP, LEQ

B START

.END

d) Program for Generation of Triangular Waveform

AMPLITUDE .SET 4

FREQ .SET 350

TEMP .SET 0

;

.MMREGS

.TEXT

START: LDP #100H

EC333 Digital Signal Processing Lab 9

 Department of ECE,ICET

SPLK #0, TEMP

CONT1: LAR AR2, #FREQ

CONT: OUT TEMP, 4

LACC TEMP

ADD #AMPLITUDE

SACL TEMP

MAR *, AR2

BANZ CONT,*-

LAR AR2, #FREQ

CONTx: OUT TEMP, 4

LACC TEMP

SUB #AMPLITUDE

SACL TEMP

MAR *, AR2

BANZ CONTx

B CONT1

OBSERVATION

S.No
Name of

Waveforms

Time Period (msec)

Amplitude(Volts)

1. Sine wave

2. Square Wave

3 Saw tooth Wave

4 Triangular Wave

RESULT

Thus the Sine, Square, Saw tooth and Triangular Wave was generated using

TMS320C50 DSP Processor.

EC333 Digital Signal Processing Lab 10

 Department of ECE,ICET

Exp No 2

Convolution: Linear & Circular

AIM

To perform the linear and circular convolution of the two sequences using

TMS320C50 DSP Processor.

ALGORITHM

1. Get the two sequence x(n) and h(n) in matrix form.

2. The convolution of the two sequences is given by

For Linear Convolution

For Linear Convolution

3. Stop the program.

PROGRAM

a) Program to Perform Linear Convolution of Two Sequences

.MMREGS

.TEXT

START:

LDP #02H

LAR AR1, #8100H ; x(n) datas

LAR AR0, #8200H ; h(n) datas

LAR AR3, #8300H ; y(n) starting

LAR AR4, #0007 ; N1+N2-1

; to fold the h(n) values

LAR AR0, #08203H

LACC #0C100H

MAR *, AR0

RPT #3

TBLW *-

; padding of zeros for x(n) values

LAR AR6, #8104H

MAR *, ar6

LACC #0H

RPT #3H

SACL *+

; convolution operation starts

EC333 Digital Signal Processing Lab 11

 Department of ECE,ICET

LOP: MAR *, AR1

LACC *+

SACL 050H ; starting of the scope of multiplication

LAR AR2, #0153H ; end of the array, to be multiplied with h(n) {150+N1-1}

MAR *, AR2

ZAP

RPT #03H ; N1-1 times so that N1 times

MACD 0C100H,*-

APAC ; toaccumulate the final product sample

MAR *, AR3

SACL *+

MAR *, AR4

BANZ LOP,*-

H: B HLT

INPUT AND OUTPUT SEQUENCE

; INPUT (x(n))

; 8100 - 1

; 8101 - 3

; 8102 - 1

; 8103 - 3

; INPUT (h(n))

; 8200 - 0

; 8201 - 1

; 8202 - 2

; 8203 - 1

; OUTPUT (y(n))

; 8300 - 0

; 8301 - 1

; 8302 - 5

; 8303 - 8

; 8304 - 8

; 8305 - 7

; 8306 - 3

b) Program to Perform Circular Convolution of Two Sequences

.MMREGS

.TEXT

START:

EC333 Digital Signal Processing Lab 12

 Department of ECE,ICET

LDP #100H

LACC 0H ; length of the input is given in 8000

SUB #1H

SACL 1H

LAR AR0, 1H

LAR AR1, #8060H;

LAR AR2, #8100H

COPYX2:

MAR *, AR1

LACC *+

MAR *, AR2

SACL *+

MAR *, AR0

BANZ COPYX2,*-

LAR AR0, 1H

LAR AR2, #8010H

LOOP3:

LAR AR1, #8060H; give the inputs x1[n] &h2[n] in AR1 & AR3

LAR AR3, #8050H

LAR AR4, 1H

ZAP

LOOP:

MAR *, AR3; multiply x1[n] & X2[n] and add the; multiplication

LT *+

MAR *, AR1; output

MPY *+

SPL 5H; store the partial result at location 8005

ADD 5H ; add the partial result with accumulator

MAR *, AR4

BANZ LOOP,*-

MAR *, AR2

; outputs of correlation are stored in AR2

SACL *+

CALL ROTATE

LOOP2:

MAR *, AR0

BANZ LOOP3,*-

H: B HLT

ROTATE:

LDP #100H ; rotate the values of X1[n]

LACC 1H

SUB #1H

SACL 2H

LACC 0050H

SACB ; 8050 data moved to the accumulator to the accumulator buffer

LAR AR3, #8051H

LAR AR5, #8070H

EC333 Digital Signal Processing Lab 13

 Department of ECE,ICET

LAR AR6, 2H

LOOP1:

MAR *, AR3

LACC *+

MAR *, AR5

SACL *+

MAR *, AR6

BANZ LOOP1,*-; DATA FROM 8051-8053 TO 8070-8072

LACB ; move the data accumulator buffer to accumulator as last data

MAR *, AR5

SACL *+

LACC #8070H

SAMM BMAR

LAR AR3, #8050H

MAR *, AR3

RPT #3H ; rotate 4 times

BLDD BMAR,*+ ; BMARautomatically incremented, to copy shifted data to 8050

RET

INPUT AND OUTPUT SEQUENCE

; INPUT:

; 8000-0004

;

; X1(n) = 8050 - 0002

; 8051 - 0001

; 8052 - 0002

; 8053 - 0001

;

; H2(n) =

8060 - 0001

; 8061 - 0002

; 8062 - 0003

; 8063 - 0004

; OUTPUT:

; 8010-000E

; 8011-0010

; 8012-000E

; 8013-0010

;

RESULT

Thus the linear convolution& circular convolution of the two sequences was

performed using TMS320C50 DSP Processor.

EC333 Digital Signal Processing Lab 14

 Department of ECE,ICET

Exp No 3
Implementation of FIR Filter

AIM

To design FIR filter for the following specification:

Approximation type: Window design - Blackmann Window

Filter type: Low-pass filter

Filter Order: 52

Cutoff frequency in KHz = 3.000000

APPARATUS REQUIRED

TMS320C50 DSP Kit, PC, RS232 Cable

PROCEDURE

1. Click on C50 debugger icon and start a new project.

2. Type the program and save it as an assembly file.

3. The input signal is given to the DSP kit.

4. Program is executed by giving G0C000 in communication window.

5. The sampled output can be viewed in CRO.

PROGRAM

.MMREGS

.TEXT ; Move the Filter coefficients from program memory to data

memory

START:

MAR*,AR0

LAR AR0,#0200H

RPT #33H

BLKP CTABLE,*+

SETC CNF ; Input data and perform convolution

ISR: LDP #0AH

LACC #0

SACL 0

IN 0,06H

LAR AR7,#0 ;change value to modify sampling freq.

MAR*,AR7

BACK: BANZ BACK,*-

IN 0,04H

NOP

EC333 Digital Signal Processing Lab 15

 Department of ECE,ICET

NOP

NOP

NOP

MAR *,AR1

LAR AR1,#0300H

LACC 0

AND #0FFFH

XOR #800H

SUB #800H

SACL *

LAR AR1,#333H

MPY #0

ZAC

ZAP

RPT #33H

MACD 0FF00H,*-

APAC

LAR AR1,#0300H

MAR *,AR1

RPT #01H

SFR

SACH * ; give as sach *,1 incase ofoverflow

LACC *

ADD #800H

SACL *

OUT *,04H

IN 0,16H

NOP

B ISR

NOP

NOP

HLT: B HLT

CTABLE:
.word 0FE8BH

.word 0FEE2H

.word 0FF74H

.word 02BH

.word 0ECH

.word 0196H

.word 0208H

.word 022BH

.word 01EDH

.word 0150H

.word 061H

.word 0FF40H

.word 0FE18H

.word 0FD19H

.word 0FC77H

.word 0FC5EH

EC333 Digital Signal Processing Lab 16

 Department of ECE,ICET

.word 0FCEEH

.word 0FE35H

.word 02BH

.word 02B4H

.word 059EH

.word 08A9H

.word 0B8FH

.word 0E07H

.word 0FD4H

.word 010C7H

.word 010C7H

.word 0FD4H

.word 0E07H

.word 0B8FH

.word 08A9H

.word 059EH

.word 02B4H

.word 02BH

.word 0FE35H

.word 0FCEEH

.word 0FC5EH

.word 0FC77H

.word 0FD19H

.word 0FE18H

.word 0FF40H

.word 061H

.word 0150H

.word 01EDH

.word 022BH

.word 0208H

.word 0196H

.word 0ECH

.word 02BH

.word 0FF74H

.word 0FEE2H

.word

RESULT

0FE8BH

Thus a FIR low pass filter is designed using TMS320C50 processor.

EC333 Digital Signal Processing Lab 17

 Department of ECE,ICET

Exp No 4
Implementation of IIR Filter

AIM

To design an IIR low pass filter using TMS320C50.

APPARATUS REQUIRED

TMS320C50 DSP Kit, PC, RS232 Cable

PROCEDURE

1. Click on C50 debugger icon and start a new project.

2. Type the program and save it as an assembly file.

3. The input signal is given to the DSP kit.

4. Program is executed by giving G0C000 in communication window.

5. The sampled output can be viewed in CRO.

PROGRAM

.MMREGS

.TEXT

START:

LDP #100H

LACC #0

SACL 02H

SACL 03H

SACL 00H

LOOP:

LACC #0

SACL 00H

IN 0,06H

LAR AR7,#30H

MAR *,AR7

BACK:BANZ BACK,*-

IN 0,04H

NOP

NOP

NOP

NOP

LACC 00H

AND #0FFFH

XOR #800H

SUB #800H

SACL 00H

EC333 Digital Signal Processing Lab 18

 Department of ECE,ICET

LT 00H

MPY #315EH

PAC

SACH 2H,1

LT 03H

MPY #4E9FH

PAC

SACH 04H,1

LACC 02H

ADD 04H

SACL 03H

ADD #800H

SACL 00H

OUT 00H,04H

IN 0,16H

B LOOP

NOP

NOP

HLT: B HLT

RESULT

Thus an IIR low pass filter is designed using TMS320C50 processor.

EC333 Digital Signal Processing Lab 19

 Department of ECE,ICET

Exp No 5
Sampling of Analog Signal

AIM

To write a program to sample and display an analog signal using TMS320C50 Kit.

APPARATUS REQUIRED

TMS320C50 DSP Kit, PC, RS232 Cable

PROCEDURE:

6. Click on C50 debugger icon and start a new project.

7. Type the program and save it as an assembly file.

8. The input signal is given to the DSP kit.

9. Program is executed by giving G0C000 in communication window.

10. The sampled output can be viewed in CRO.

PROGRAM

DATA .SET 2H

DELAY .SET3H

.MMREGS

.TEXT

START: LDP#100H

LAR AR0, #9000H

LAR AR1, #719H

REP: IN 0, 06

RPT #OFH

NOP

IN 0, 04

SPLK #00FFH, DELAY

RPT DELAY

NOP

LACC 0

AND #0FFFH

MAR*, AR0

SACL*+, 0, AR1

BANZ REP,*-

CONT1: LAR AR0, #9000H

LAR AR1, #719H

LOOP: MAR*, AR0

RPT #1FFH

NOP

OUT*+, 04, AR1

EC333 Digital Signal Processing Lab 20

 Department of ECE,ICET

BANZ LOOP,*-

B CONT1

RESULT:

Thus the input signal was sampled and displayed.

EC333 Digital Signal Processing Lab 21

 Department of ECE,ICET

Familiarization of MATLAB

MATLAB is an interactive program for doing matrix calculations and has now grown

to a high level mathematical language that can solve integrals and differential equations

numerically and plot a wide variety of two and three dimensional graphs.

1. Definition of Variables

Variables are assigned numerical values by typing the expression directly. The answer

will not be displayed when a semicolon is put at the end of an expression.

MATLAB utilizes the following arithmetic operators:

+ Addition

- Subtraction

* Multiplication

/ Division

^ Power operator

‘Transpose

A variable can be assigned using a formula that utilizes these operators and either

numbers or previously defined variables. To determine the value of a previously defined

quantity, type the quantity by itself. If your expression does not fit on one line, use an ellipsis

(three or more periods at the end of the line) and continue on the next line. There are several

predefined variables which can be used at any time, in the same manner as user defined

variables:

i - sqrt(-1)

j - sqrt(-1)

pi - 3.1416...

There are also a number of predefined functions that can be used when defining a

variable. Some common functions that are used in this text are:

Abs- magnitude of a number (absolute value for real numbers)

angle- angle of a complex number, in radians

cos - cosine function, assumes argument is in radians

sin - sine function, assumes argument is in radians

exp - exponential function(can be used on complex numbers

EC333 Digital Signal Processing Lab 22

 Department of ECE,ICET

2. Definition of Matrices

MATLAB is based on matrix and vector algebra; even scalars are treated as 1x1

matrices. Therefore, vector and matrix operations are as simple as common calculator

operations. Vectors can be defined in two ways. The first method is used for arbitrary

elements.

v = [1 3 5 7]; Creates a 1x4 vector with elements 1, 3, 5 and 7.

Note that commas could have been used in place of spaces to separate the elements.

Additional elements can be added to the vector,v(5) = 8; yields the vector v = [1 3 5 7 8].

Previously defined vectors can be used to define a new vector.

The second method is used for creating vectors with equally spaced elements.

t = 0:0.1:10; Creates a 1x11 vector with the elements 0, .1, .2, .3 ... 10. Note that the middle

number defines the increment. If only two numbers are given, then the increment is set to a

default of 1.

k = 0:10; Creates a 1x11 vector with the elements 0, 1, 2 ... 10.

Matrices are defined by entering the elements row by row.

M = [1 2 4; 3 6 8]; creates the matrix

M = [1 2 4]

[3 6 8]

There are a number of special matrices that can be defined as follows.

Null matrix: M = [];

nxm matrix of zeros: M = zeros(n,m);

nxm matrix of ones: M = ones(n,m);

nxn identity matrix: M = eye(n);

A particular element of a matrix can be assigned as, M (1, 2) = 5; Places the number 5 in the

first row, second column. Operations and functions that were defined for scalars in the

previous section can also be used on vectors and matrices.

Functions are applied element by element. For example,

t = 0:10;

EC333 Digital Signal Processing Lab 23

 Department of ECE,ICET

x = cos(2*t); Creates a vector x with elements equal to cos(2t) for t = 0, 1, 2, ..., 10.

Operations that need to be performed element-by-element can be accomplished by preceding

the operation by a ".". For example, to obtain a vector x that contains the elements of x (t) =

tcos(t) at specific points in time, you cannot simply multiply the vector t with the vector

cos(t). Instead you multiply their elements together:

t = 0:10;

x = t.*cos(t);

3. General information

MATLAB is case sensitive so "a" and "A" are two different names. Comment

statements are preceded by a "%". On-line help for MATLAB can be reached by typing help

for the full menu or typing help followed by a particular function name or M-file name. For

example, help cos gives help on the cosine function.

The number of digits displayed is not related to the accuracy. To change the format of

the display, type format short e for scientific notation with 5 decimal places, format long e

for scientific notation with 15 significant decimal places and format bank for placing two

significant digits to the right of the decimal.

The commands who and whos give the names of the variables that have been defined

in the workspace. The command length(x) returns the length of a vector x and size(x) returns

the dimension of the matrix x.

4. M-files

M-files are macros of MATLAB commands that are stored as ordinary text files with

the extension "m", that is filename.m. An M-file can be either a function with input and

output variables or a list of commands.

The following describes the use of M-files on a PC version of MATLAB.

MATLAB requires that the M-file must be stored either in the working directory or in

a directory that is specified in the MATLAB path list. For example, consider using MATLAB

on a PC with a user-defined M-file stored in a directory called "\MATLAB\MFILES". Then

to access that M-file, either changes the working directory by typing cd\matlab\mfiles from

within the MATLAB command window or by adding the directory to the path. Permanent

EC333 Digital Signal Processing Lab 24

 Department of ECE,ICET

addition to the path is accomplished by editing the \MATLAB\matlabrc.m file, while

temporary modification to the path is accomplished by typing addpath c:\matlab\mfiles from

within MATLAB.

MATLAB M-files are most efficient when written in a way that utilizes matrix or

vector operations. Loops and if statements are available, but should be used sparingly since

they are computationally inefficient. An if statement can be used to define conditional

statements. The allowable comparisons between expressions are >=, <=, <, >, ==, and ~=.

Suppose that you want to run an M-file with different values of a variable T. The following

command line within the M-file defines the value.

T = input ('Input the value of T: ')

Whatever comment is between the quotation marks are displayed to the screen when the M-

file is running, and the user must enter an appropriate value.

5. How to get started??

Double click on icon for MATLAB. Within about 30 seconds MATLAB will open, a

screen like the picture given below.

This is the MATLAB screen. It has broken into 3 parts.

 Command Window – This is where you can type commands and usually the answers

(or error messages) appear here too. You will see the cursor flickering after the >>

prompt. This means that MATLAB is waiting for further instructions.

 Workspace– if you define new quantities (called variables) their names should be

listed here.

 Command History– This is past commands are remembered. If you want to re-run a

previous command or to edit it you can drag it from this window to the command

window to re-run it.

EC333 Digital Signal Processing Lab 25

 Department of ECE,ICET

To begin to use MATLAB, click New: M-file from the File menu. This opens a blank window as

shown below.

EC333 Digital Signal Processing Lab 26

 Department of ECE,ICET

The M-file is executed using the Run command under the Tools menu. The output signal

appears in Figure Window.

The output data appears in Command Window.

EC333 Digital Signal Processing Lab 27

 Department of ECE,ICET

Exp No 6

Generation of Waveforms

AIM

To generate the basic signals (Continuous and Discrete).

THEORY

A signal is defined as any physical quantity that varies with time, space or any other

independent variable. A system is defined as a physical device that performs an operation on

a signal. Signal processing is any operation that changes the characteristics of a signal using a

system. These characteristic include the amplitude, shape, phase and frequency content of the

signal.

PROGRAM

% periodic continuous signals

t=0:0.01:6*pi;

f=1;

%sine wave

x=sin(2*pi*f*t);

subplot(3,2,1);

plot(t,x);

title('sine wave');

grid on

%cosine wave

y=cos(2*pi*f*t);

subplot(323);

plot(t,y);

title('cosine wave');

grid on

%tangent wave

t=-3*pi:0.01:3*pi;

EC333 Digital Signal Processing Lab 28

 Department of ECE,ICET

z=tan(2*pi*f*t);

subplot(325);

plot(t,z);

title('tan wave');

grid on

%square wave

t=0:0.001:1;

f=10;

a=square(2*pi*f*t);

subplot(3,2,2);

plot(t,a);

title('square wave');

%sawtooth wave

b=sawtooth(2*pi*f*t);

subplot(3,2,4);

plot(t,b);

title('sawtooth wave');

%triangular wave

c=sawtooth(2*pi*f*t,0.3);

subplot(3,2,6);

plot(t,c);

title('trinagular wave');

% discrete waveforms

n=0:1:100;

k=0.01;

%sine wave

x=sin(2*pi*k*n);

subplot(5,1,1);

stem(n,x);

EC333 Digital Signal Processing Lab 29

 Department of ECE,ICET

title('sine wave');

%cosine wave

y=cos(2*pi*k*n);

subplot(5,1,2);

stem(n,y);

title('cosine wave');

%square wave

z=square(2*pi*k*n);

subplot(5,1,3);

stem(n,z);

title('square wave');

%sawtooth wave

a=sawtooth(2*pi*k*n);

subplot(5,1,4);

stem(n,a);

title('sawtooth wave');

%triangular wave

b=sawtooth(2*pi*k*n,0.3);

subplot(5,1,5);

stem(n,b);

title('trinagular wave');

%aperiodic signals

%exponential signal

clc;

clear all;

close all;

t=-5:.1:5;

x1=exp(-t);

EC333 Digital Signal Processing Lab 30

 Department of ECE,ICET

subplot(3,2,1);

plot(t,x1);

title('exponential signal');

t=-10:.1:10;

x2=exp(-(t.^2)/2);

subplot(3,2,2);

plot(t,x2);

title('symmetric exponential signal');

%sinc signal

x3=sinc(t/2);

subplot(3,2,3);

plot(t,x3);

title('sinc signal');

axis([-10 10 -0.3 1]);

%signumfsignal

x4=sign(t);

subplot(3,2,4);

plot(t,x4);

title('signum signal');

%triangular pulse

x5=tripuls(t/10);

subplot(3,2,5);

plot(t,x5);

title('triangular pulse');

%rectangular pulse

x6=rectpuls(t/10);

subplot(3,2,6);

plot(t,x6);

title('rectangular pulse');

EC333 Digital Signal Processing Lab 31

 Department of ECE,ICET

OUTPUT WAVEFORMS

EC333 Digital Signal Processing Lab 32

 Department of ECE,ICET

RESULT:

Using MATLAB functions, the required basic signals were obtained.

EC333 Digital Signal Processing Lab 33

 Department of ECE,ICET

Exp No: 7

Verification of Sampling Theorem

AIM

To verify the sampling theorem.

THEORY

A bandlimited signal x(t) can be reconstructed exactly if it is sampled at a rate atleast

twice the maximum frequency component in it. If the maximum frequency component of x(t)

is fm. To recover the signal x(t) exactly from its samples it has to be sampled at a rate fs ≥

2fm. The minimum required sampling rate fs = 2fm is called Nyquist rate.

PROGRAM

close all;

clear all;

t=-10:0.01:10;

T=8;

fm=1/T;

x=cos(2*pi*fm*t);

fs1=1.2*fm;

fs2=2*fm;

fs3=8*fm;

n1=-4:1:4;

xn1=cos(2*pi*n1*fm/fs1);

subplot(221)

plot(t,x);

xlabel('time in seconds');

ylabel('x(t)');

title('continous time signal');

subplot(222)

stem(n1,xn1);

hold on;

EC333 Digital Signal Processing Lab 34

 Department of ECE,ICET

plot(n1,xn1);

xlabel('n');

ylabel('x(n)');

title('discrete time signal with fs<2fm');

%

n2=-5:1:5;

xn2=cos(2*pi*n2*fm/fs2);

subplot(223)

stem(n2,xn2);

hold on;

plot(n2,xn2);

xlabel('n');

ylabel('x(n)');

title('discrete time signal with fs=2fm');

%

n3=-20:1:20;

xn3=cos(2*pi*n3*fm/fs3);

subplot(224)

stem(n3,xn3);

hold on;

plot(n3,xn3);

xlabel('n');

ylabel('x(n)');

title('discrete time signal with fs>2fm');

RESULT

Written and executed a MATLAB program to verify the sampling theorem.

EC333 Digital Signal Processing Lab 35

 Department of ECE,ICET

Exp No: 8

AIM

AM & FM Generation

To write a MATLAB program for the generation of amplitude modulated signal and

frequency modulated signal.

THEORY

For the efficient transmission and reception of audio frequency signals transmitter and

receiver antennas should have a height of quarter wavelength of the frequency used. Such a

very long antennas are impractical to realize at low and medium frequency range. Also the

audio frequency signals are susceptible to noise; to avoid this problem modulation is used.

AM is the method of transmitting signals such as sound or digital information, in

which the amplitude of the carrier wave is changed according to the message signal. Here we

are simply adding the carrier amplitude with message signal to obtain AM signal, then the

instantaneous amplitude of the carrier get altered with respect to the modulating signal.

Let the modulating signal be

Em(t)=Em sin(wmt)

and the carrier signal be

Ec(t)=Ec sin(wct)

then the modulated signal e[t] is expressed as

e(t)=Ec sin(wct)(1+msin(wmt))

In FM, frequency of the carrier signal having high frequency is varied in accordance

with the instantaneous amplitude of the modulating signal having low frequency.FM signals

can be easily plotted using simple MATLAB functions.

Let the modulating signal be

Em(t)=Emcos(wmt)

and the carrier signal be

Ec(t)=Eccos(wct)

EC333 Digital Signal Processing Lab 36

 Department of ECE,ICET

then the modulated signal e[t] is expressed as

e(t)=Eccos((wct)+m sin(wmt)) , where m is known as the modulation index

ALGORITHM

For AM

1. Enter message frequency fm, message amplitude Em, carrier frequency fc, carrier

amplitude Ec and modulation index m.

2. Generate message signal em by using the expression e(t)=Em sin(wmt)

3. Generate carrier signal ec by using the expression ec(t)=Ec sin(wct)

4. Generate amplitude modulated signal e[t] , e[t]=Ec sin(wct)(1+msin(wmt))

5. Plot message, carrier and modulated signal

PROGRAM

For AM

clc;

clear all;

close all;

Em=input('enter the amplitude of message signal \n');

Fm=input('enter the frequency of message signal \n');

Ec=input(‘enter the amplitude of carrier signal\n’);

Fc=input(‘enter the frequency of carrier signal\n’);

m=input('enter modulation index \n');

Fs=input('enter the sampling frequency\n');

t=linspace(0,5/fm,1000);

em=Em*sin(2*pi*Fm*t);

figure(1);

subplot(3,1,1);

plot(t,em);

xlabel('time(s)');

ylabel('amplitude(v)');

title('modulating signal');

ec=Ec*sin(2*pi*Fc*t);

subplot(3,1,2);

EC333 Digital Signal Processing Lab 37

 Department of ECE,ICET

plot(t,ec);

xlabel('time(s)');

ylabel('amplitude(V)');

title('carrier signal');

e=Ec*(1+m*sin(2*pi*Fm*t)).*sin(2*pi*Fc*t);

subplot(3,1,3);

plot(t,e);

xlabel('time(s)');

ylabel('amplitude(v)');

title('modulated signal');

%spectrum

a=fftshift(fft(em,Fs));

b=fftshift(fft(ec,Fs));

c=fftshift(fft(e,Fs));

f=-Fs/2: Fs/2-1;

figure(2);

subplot(3,1,1);

plot(f,abs(a));

title('carrier spectrum');

axis([-100 100 0 500]);

subplot(3,1,2);

plot(f,abs(b));

title('message signal spectrum');

axis([-100 100 0 500]);

subplot(3,1,3);

plot(f,abs(c));

title('AM spectrum');

axis([-100 100 0 2500]);

EC333 Digital Signal Processing Lab 38

 Department of ECE,ICET

OBSERVATIONS

Enter the amplitude of message signal

5

Enter the frequency of message signal

500

Enter the amplitude of the carrier signal

1

Enter the frequency of the carrier signal

5000

Enter modulation index

0.6

ALGORITHM

For FM

1. Enter message frequency fm, message amplitude Em, carrier frequency fc, carrier

amplitude Ec and modulation index m.

2. Generate message signal em by using the expression em(t)=Emcos(wmt)

3. Generate carrier signal ec by using the expression ec(t)=Eccos(wct)

4. Generate frequency modulated signal e[t] , e[t]=Eccos((wct)+m*sin(wmt))

EC333 Digital Signal Processing Lab 39

 Department of ECE,ICET

5. plot message, carrier and modulated signal

PROGRAM

For FM

clc;

clear all;

close all;

Em=input('enter the amplitude of message signal \n');

Fm=input('enter the frequency of message signal \n');

Ec=input(‘enter the amplitude of carrier signal\n’);

Fc=input(‘enter the frequency of carrier signal\n’);

Fs=input('enter the sampling frequency\n');

m=input('enter modulation index \n');

t=linspace(0,5/fm,1000);

em=Em*sin(2*pi*Fm*t);

figure(1);

subplot(3,1,1);

plot(t,em);

xlabel('time(s)');

ylabel('amplitude(v)');

title('modulating signal');

ec=Ec*sin(2*pi*Fc*t);

subplot(3,1,2);

plot(t,ec);

xlabel('time(s)');

ylabel('amplitude(V)');

title('carrier signal');

e=Ec*cos(2*pi*Fc*t+m*sin(2*pi*Fm*t))

subplot(3,1,3);

plot(t,e);

xlabel('time(s)');

ylabel('amplitude(v)');

title('modulated signal');

EC333 Digital Signal Processing Lab 40

 Department of ECE,ICET

%FM spectrum

a=fftshift(fft(em,Fs));

b=fftshift(fft(ec,Fs));

c=fftshift(fft(e,Fs));

f=-Fs/2: Fs/2-1;

figure(2);

subplot(3,1,1);

plot(f,abs(a));

title('carrier spectrum');

axis([-100 100 0 500]);

subplot(3,1,2);

plot(f,abs(b));

title('message signal spectrum');

axis([-100 100 0 500]);

subplot(3,1,3);

plot(f,abs(c));

title('FM spectrum');

axis([-100 100 0 200]);

OBSERVATION

Enter the amplitude of message signal

5

Enter the frequency of message signal

500

Enter the amplitude of carrier signal

1

Enter the frequency of carrier signal

EC333 Digital Signal Processing Lab 41

 Department of ECE,ICET

5000

Enter modulation index

10

RESULT

Written and executed a MATLAB program to generate AM and FM waves and verified the

output.

EC333 Digital Signal Processing Lab 42

 Department of ECE,ICET

Exp No 9
Linear& Circular Convolution

(a) Linear Convolution

AIM

Write a MATLAB program to find the linear convolution of two sequences.

THEORY

Convolution is an integral concatenation of two signals. The most popular application

is the determination of the output signal of a linear time-invariant system by convolving the

input signal with the impulse response of the system. Convolving two signals is equivalent to

multiplying the Fourier transform of the two signals. The linear convolution of two

continuous time signals x(t) and h(t) is defined by

For discrete time signals x(n) and h(n),convolution is defined by

ALGORITHM

1. Get the input sequence x(n) and impulse response h(n).

2. Choose an initial value of n,the starting time for evaluating the output sequence y(n).

If x(n) starts at n = n1 and h(n) starts at n = n2, then n = n1 + n2 is a good choice.

3. Express both sequences in terms of the index k.

4. Fold h(k) about k=0 to obtain h(-k) and shift by n to the right if n is positive and left if

n is negative to obtain h(n-k).

5. Multiply x(n) and h(n-k) element by element and sum up the products to get y(n).

6. Increment the index n, shift the sequence h(n-k) to right by one sample and do Step 4.

7. Repeat step 5 until the sum of products is zero for all the remaining values of n.

EC333 Digital Signal Processing Lab 43

 Department of ECE,ICET

PROGRAM

clc;

clear all;

close all;

x=input('enter the input sequence');

h=input('enter the impulse response');

m=length(x);

n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)];

fori=1:n+m-1

Y(i)=0;

for j=1:m

if(i-j+1>0)

Y(i)=Y(i)+X(j)*H(i-j+1);

else

end

end

end

disp('Output Y');

disp(Y);

stem(Y);

ylabel('Y[n]');

xlabel('n');

title('Linear Convolution ');

EC333 Digital Signal Processing Lab 44

 Department of ECE,ICET

OUTPUT:

Enter the input sequence: [1 5 2 7]

Enter the impulse response: [4 2 8 4 5]

Output Y =: [4 22 26 76 55 89 38 35]

(b) Circular Convolution

AIM

Write a MATLAB program to find the Circular Convolution of two sequences.

THEORY

Circular convolution of two finite duration sequences x1[n] and x2[n] both of the

length N is defined by

Multiplication of the DFTs of two sequences is equivalent to the circular convolution of the

two sequences in time domain. If x1[n] is a sequence of L number of samples and x2[n] with

M samples ,after convolution y[n] will contain N= max(L,M) samples. It cannot be used to

find the response of a linear filter without zero padding.

ALGORITHM

1. Get the input sequence x(n) and impulse response h(n).

EC333 Digital Signal Processing Lab 45

 Department of ECE,ICET

2. Fold h(k) about k=0 to obtain h(-k) and shift by n to the right if n is positive and left if

n is negative to obtain h(n-k).

3. Multiply corresponding samples on the two circles and sum the products to produce

output.

4. Rotate h(n-k) one sample at a time in counter clockwise direction and go to step 3 to

obtain the next value of output.

5. Repeat the step 4 until h(k) first sample lines up with the first sample of the x(k) once

again.

PROGRAM

clc;

clear all;

close all;

x=input('enter the input sequence');

h=input('enter the impulse response');

N1=length(x);

N2=length(h);

N=max(N1,N2);

x=[x zeros(1,N-N1)];

h=[h zeros(1,N-N2)];

for n=0:(N-1)

y(n+1)=0;

fori=0:(N-1)

j=mod(n-i,N);

y(n+1)=y(n+1)+x(i+1)*h(j+1);

end

end

disp('Output Y');

disp(y);

stem(y);

ylabel('Y[n]');

xlabel('n');

title('Circular Convolution ');

EC333 Digital Signal Processing Lab 46

 Department of ECE,ICET

OUTPUT:

Enter the input sequence: [1 5 2 7]

Enter the impulse response: [4 2 8 4 5]

Output Y =: [93 60 61 76 55]

RESULT

Obtained the linear and circular convolution of two sequences and verified the output.

EC333 Digital Signal Processing Lab 47

 Department of ECE,ICET

Exp No: 10

AIM

DFT & IDFT

Write a MATLAB program to find the DFT and IDFT for the given input sequence.

THEORY

Given a sequence of N samples x(n), indexed by n = 0..N-1, the Discrete Fourier

Transform (DFT) is defined as X(k),where k=0..N-1:

The sequence x(n) can be calculated from X(k) using the Inverse Discrete Fourier Transform

(IDFT):

ALGORITHM

DFT

1. Get the input sequence x(n).

2. Specify the length of dft (N), N should be a power of 2.

3. If N> length of x then pad N-l zeros to the input.

4. Implement the DFT equation

PROGRAM

DFT

x=input('enter the input sequence x[]\n');

N=input('length\n');

N1=length(x);

x=[x zeros(1,N-N1)];

for k=0:N-1

EC333 Digital Signal Processing Lab 48

 Department of ECE,ICET

y(k+1)=0;

for n=0:N-1

y(k+1)=y(k+1)+x(n+1)*exp(-j*2*pi*k*n/N);

end

end

stem([0:length(y)-1],y)

title('op sequence');

OUTPUT

Enter the sequence x[1 2 3 4]

The length: 8

Ans:10.0000 -0.4142 - 7.2426i -2.0000 + 2.0000i 2.4142 - 1.2426i -2.0000 - 0.0000i 2.4142 +

1.2426i -2.0000 - 2.0000i -0.4142 + 7.2426i

IDFT

ALGORITHM

1. Enter the input sequence.

2. Calculate the length of input sequence.

3. By zero padding create matrix for output sequence.

4. Find IDFT by using the equation.

EC333 Digital Signal Processing Lab 49

 Department of ECE,ICET

PROGRAM

x=input('enter the input sequence x[]\n');

N=input('length\n');

N1=length(x);

x=[x zeros(1,N-N1)];

for n=0:N-1

z(n+1)=0;

for k=0:N-1

z(n+1)=z(n+1)+(x(k+1)*exp(j*2*pi*k*n/N));

end

end

z=z/N

stem(z)

title('op sequence');

OUTPUT

Enter the sequence: x[15 -5.4142-7.2426i 3+2i -2.5858-1.2426i 3 -2.5858+1.2426i 3-2i -

5.4142+7.2426i]

The length: 8

Ans: 1.0000 - 0.0000i 2.0000 - 0.0000i 3.0000 - 0.0000i 4.0000 + 0.0000i 5.0000 - 0.0000i

0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i

RESULT

Obtained DFT and IDFT of the given sequence and verified.

EC333 Digital Signal Processing Lab 50

 Department of ECE,ICET

Exp No: 11

IIR FilterDesign-Butterworth &Chebychev

THEORY

The filters designed by considering all the infinite samples of impulse response are

called IIR filters. The impulse response is obtained by taking inverse Fourier Transform of

ideal frequency response. The popular methods for such filter design use the technique of

transforming the analog filter to an equivalent digital filter. We know that the analog filter

with transfer function Ha(s) is stable if all its poles lie in the left half of the s-plane.

Consequently, if the conversion technique is to be effective, it should posses the following

desirable properties.

1. The imaginary axis in the s-plane should map into the unit circle in the z-plane .Thus

there will be a direct relationship between the two frequency variables in the two

domains.

2. The left half of the s-plane should map into the interior of the unit circle in the z-

plane. Thus a suitable analog filter will be converted to a stable digital filter.

The IIR filter is a discrete time system that is designed to pass the spectral content of

the input signal in a specified band of frequencies. Based on the frequency response the filters

are classified into four types. They are Low pass; High pass, Band pass, and Band stop filters.

A number of solutions to the approximation problem of analog filter design are well

developed. The popular among them are Butterworth and Chebyshev approximation. For

designing a digital IIR filter, first an equivalent analog filter is designed using any one of the

approximation technique and the given specifications. The result of the analog filter design

will be an analog filter transfer function Ha(s) .The analog transfer function is converted to

digital transfer function H(z) using either Bilinear or Impulse invariant transformation . The

digital transfer function H(z) can be realized in a software that runs on a digital hardware (or

it can be implemented in firmware).

Important features of IIR filters

1. The physically realizable IIR filters does not have linear phase.

EC333 Digital Signal Processing Lab 51

 Department of ECE,ICET

2. The IIR filter specifications include the desired characteristics for the magnitude

response only.

Butterworth Filters

(a) BUTTERWORTH IIR LPF

AIM

To write a program to study the characteristics of Butterworth IIR low pass filter.

ALGORITHM

1. Enter the passband ripple rp, stopband ripple rs, passband frequency in Hz, sampling

frequency in Hz, stopband frequency in Hz.

2. Compute the frequency in radians.

3. Find cut off frequency and order of filter using command word ‘buttord’.

4. Find the coefficients of filter using command word ‘butter’.

5. Find the frequency response of filter using the coefficients with command word

freqz. Let it be h and omega.

6. Find the magnitude and phase of filter output h.

7. Plot the magnitude and phase response of filter.

PROGRAM

clc;

rp=input(‘Enter the passband ripple:’);

rs= input(‘Enter the stopband ripple:’);

wp= input(‘Enter the passband frequency:’);

ws= input(‘Enter the stopband frequency:’);

fs=input(‘Enter the sampling frequency:’);

w1=2*wp/fs;

w2=2*ws/fs;

[n,wn]=buttord(w1,w2,rp,rs);

[b a]=butter(n,wn);

W=[0 :0.01:pi];

[h,omega]=freqz(b,a,w);

EC333 Digital Signal Processing Lab 52

 Department of ECE,ICET

m=20*log10(abs(h));

an=angle(h);

% plot amplitude response

Subplot(2,1,1);

Plot(omega/pi,m);

Xlabel(‘Normalised frequency’);

Ylabel(‘Gain in dB’);

Title(‘Amplitude response’);

% plot phase response

Subplot(2,1,2);

Xlabel(‘Normalised frequency’);

Ylabel(‘phase in radians’);

Title(‘phase response’);

OBSERVATIONS

Enter the passband ripple: 0.5

Enter the stopband ripple: 50

Enter the passband frequency: 1200

Enter the stopband frequency: 2400

Enter the sampling frequency: 10000

EC333 Digital Signal Processing Lab 53

 Department of ECE,ICET

(b) BUTTERWORTH IIR HPF

AIM

Write a MATLAB program to design IIR Butterworth high-pass filter.

ALGORITHM:

1. Enter the passband ripple rp, stopband ripple rs, passband frequency in Hz,

sampling frequency in Hz, stopband frequency in Hz.

2. Compute the frequency in radians.

3. Find cut off frequency and order of filter using command word ‘buttord’.

4. Find the coefficients of filter using command word ‘butter’.

5. Find the frequency response of filter using the coefficients with command word

freqz. Let it be h and omega.

6. Find the magnitude and phase of filter output h.

7. Plot the magnitude and phase response of filter.

PROGRAM

clc;

rp=input(‘Enter the passband ripple:’);

rs= input(‘Enter the stopband ripple:’);

wp= input(‘Enter the passband frequency:’);

ws= input(‘Enter the stopband frequency:’);

fs=input(‘Enter the sampling frequency:’);

w1=2*wp/fs;

w2=2*ws/fs;

[n,wn]=buttord(w1,w2,rp,rs);

[b a]=butter(n,wn,’high’);

W=[0 :0.01:pi];

[h,omega]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

% plot amplitude response

Subplot(2,1,1);

Plot(omega/pi,m);

EC333 Digital Signal Processing Lab 54

 Department of ECE,ICET

Xlabel(‘Normalised frequency’);

Ylabel(‘Gain in dB’);

Title(‘Amplitude response’);

% plot phase response

Subplot(2,1,2);

Xlabel(‘Normalised frequency’);

Ylabel(‘phase in radians’);

Title(‘phase response’);

OBSERVATIONS

Enter the passband ripple: 0.5

Enter the stopband ripple: 50

Enter the passband frequency: 1200

Enter the stopband frequency: 2400

Enter the sampling frequency: 10000

EC333 Digital Signal Processing Lab 55

 Department of ECE,ICET

(c) BUTTERWORTH IIR BPF

.

AIM:

Write a MATLAB program to design IIR Butterworth band-pass filter

ALGORITHM

1. Enter the passband ripple rp, stopband ripple rs, passband frequency in Hz, stopband

frequency in Hz, sampling frequency in Hz.

2. Compute the frequency in radian.

3. Find cut-off frequency and order of the filter using command word ‘buttord’.

4. Find the coefficient of filter using the command word ‘butter’.

5. Find the frequency response of filter using the coefficient with command word

‘freqz’. Let it be h & w.

6. Find the magnitude and phase of filter output h

7. Plot the magnitude and phase response of filter

PROGRAM

clc;

rp=input('enter the passband ripple:');

rs=input('enter the stopband ripple:');

wp=input('enter the passband frequency:');

ws=input('enter the stopband frequency:');

fs=input('enter the sampling frequency:');

w1=2*wp/fs;

w2=2*ws/fs;

[n]=buttord(w1,w2,rp,rs);

wn=[w1 w2];

[b,a]=butter(n,wn,'stop');

w=[0:0.01:pi];

[h,omega]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

%plot amplitude response

subplot(2,1,1);

EC333 Digital Signal Processing Lab 56

 Department of ECE,ICET

plot(omega/pi,m);

xlabel('normalised frequency');

ylabel('gain in dB');

title('amplitude response');

%plot phase response

subplot(2,1,2);

plot(omega/pi,an);

xlabel('normalised frequency');

ylabel('phase in radians');

title('phase response');

OBSERVATIONS

Enter the passband ripple: 0.2

Enter the stopband ripple: 40

Enter the passband frequency: [4800 5200]

Enter the stopband frequency: [4500 5500]

Enter the sampling frequency: 20000

EC333 Digital Signal Processing Lab 57

 Department of ECE,ICET

Chebyshev Filters

(a) Chebyshev type1 LPF

AIM

Write a matlab program to study the characteristics of a chebyshev low pass filter

PROGRAM

clc;

rp=input('Enter the passband ripple:');

rs=input('Enter the stopband ripple:');

wp=input('Enter the passband frequency:');

ws=input('Enter the stopband frequency:');

fs=input('Enter the sampling frequency:')

w1=2*wp/fs;

w2=2*ws/fs;

[nwn]=cheb1ord(w1,w2,rp,rs);

[b a]=cheby1(n,rp,wn);

w= [0:.01:pi];

[h,omega]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

subplot(2,1,1)

plot(omega/pi,m)

xlabel('Normalized Frequency')

ylabel('Gain in dB')

title('amplitude response')

subplot(2,1,2)

plot(omega/pi,an)

xlabel('Normalized Frequency')

ylabel('Phase in Radians')

title('Phase response')

EC333 Digital Signal Processing Lab 58

 Department of ECE,ICET

OBSERVATION

Enter the passband ripple: 0.2

Enter the stopband ripple: 45

Enter the passband frequency: 1500

Enter the stopband frequency: 1700

Enter the sampling frequency: 10000

(b) Chebyshev type1 HPF

AIM

Write a MATLAB program to study the characteristics of a chebyshev high-pass filter.

PROGRAM

clc;

rp=input('Enter the passband ripple:');

rs=input('Enter the stopband ripple:');

wp=input('Enter the passband frequency:');

EC333 Digital Signal Processing Lab 59

 Department of ECE,ICET

ws=input('Enter the stopband frequency:');

fs=input('Enter the sampling frequency:')

w1=2*wp/fs;

w2=2*ws/fs;

[nwn]=cheb1ord(w1,w2,rp,rs);

[b a]=cheby1(n,rp,wn,'high');

w=[0:.01:pi];

[h,omega]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

subplot(2,1,1)

plot(omega/pi,m)

xlabel('Normalized Frequency')

ylabel('Gain in dB')

title('amplitude response')

subplot(2,1,2)

plot(omega/pi,an)

xlabel('Normalized Frequency')

ylabel('Phase in Radians')

title('Phase response')

OBSERVATION

Enter the passband ripple: 0.5

Enter the stopband ripple: 40

Enter the passband frequency: 4500

Enter the stopband frequency: 4400

Enter the sampling frequency: 10000

EC333 Digital Signal Processing Lab 60

 Department of ECE,ICET

(c) Chebyshev type1 BPF

AIM

Write a MATLAB program to study the characteristics of a chebyshev band-pass filter

PROGRAM

clc;

rp=input('Enter the passband ripple:');

rs=input('Enter the stopband ripple:');

wp=input('Enter the passband frequency:');

ws=input('Enter the stopband frequency:');

fs=input('Enter the sampling frequency:')

w1=2*wp/fs;

w2=2*ws/fs;

[nwn]=cheb1ord(w1,w2,rp,rs);

[b a]=cheby1(n,rp,wn,'bandpass');

w=[0:.01:pi];

[h,omega]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

subplot(2,1,1)

EC333 Digital Signal Processing Lab 61

 Department of ECE,ICET

plot(omega/pi,m)

xlabel('Normalized Frequency')

ylabel('Gain in dB')

title('amplitude response')

subplot(2,1,2)

plot(omega/pi,an)

xlabel('Normalized Frequency')

ylabel('Phase in Radians')

title('Phase response')

OBSERVATION

Enter the passband ripple: 0.5

Enter the stopband ripple: 40

Enter the passband frequency: [4500 5500]

Enter the stopband frequency: [4800 5200]

Enter the sampling frequency: 20000

RESULT

Obtained and verified the amplitude and phase response of IIR butterworth HP, LP & BPF.

EC333 Digital Signal Processing Lab 62

 Department of ECE,ICET

Exp No 12
FIR Filter -Window Method

AIM

Write a program to design FIR filters using rectangular, Bartlett, hanning and hamming

windows.

THEORY

The filters designed by using finite number of samples of impulse response are called

FIR filters. These finite number of samples are obtained from the infinite duration desired

impulse response hd (n) .Here hd(n) is the inverse Fourier Transform of Hd(ù), where Hd(ù)

is the ideal(desired) frequency response. The various methods of designing FIR filters differs

only in the method of determining the samples of h(n) from the samples of hd(n).

Various steps in designing FIR filters

1. Choose an ideal (desired) frequency response, Hd(ù).

2. Take inverse Fourier Transform of Hd(ù) to get hd(n) or sample Hd(ù) at finite

number of points (N-point) to get H(k).

3. If hd(n) is determined then convert the infinite duration hd(n) to a finite duration

h(n),(usually h(n) is an N-point sequence) or if H(k) is determined then take N-point

inverse DFT to get h(n).

4. Take Z-transform of h(n) to get H(z), where H(z) is the transfer function of the digital

filter.

5. Choose a suitable structure and realize the filter.

6. Verify the design by simulation.

Advantages of FIR filters

1. FIR filters with exactly linear phase can be easily designed.

2. Efficient realization of FIR filter exist as both recursive and non-recursive structures.

3. FIR filters realized non-recursively i.e., by direct convolution are always stable.

4. Round off noise, which is inherent in realizations with finite precision arithmetic can

easily be made small for non-recursive realization of FIR filters.

EC333 Digital Signal Processing Lab 63

 Department of ECE,ICET

PROGRAM

clc;

clear all;

n=30;wn=0.5;

w_rect=rectwin(n+1);

b1=fir1(n,wn,w_rect);

[h1 w1]=freqz(b1,1,512,1000);

w_bar=bartlett(n+1);

b2=fir1(n,wn,w_bar);

[h2 w2]=freqz(b2,1,512,1000);

w_ham=hamming(n+1);

b3=fir1(n,wn,w_ham);

[h3 w3]=freqz(b3,1,512,1000);

w_hann=hann(n+1);

b4=fir1(n,wn,w_hann);

[h4 w4]=freqz(b4,1,512,1000);

window_t=[w_rectw_barw_hamw_hann];

figure(1);

subplot(221);

stem(w_rect);

title('Rectangular window');

grid

subplot(222);

stem(w_bar);

title('bartlatt window');

grid

subplot(223);

stem(w_ham);

title('hamming window');

grid

subplot(224);

stem(w_hann);

title('hanning window');

EC333 Digital Signal Processing Lab 64

 Department of ECE,ICET

grid

figure(2);

plot(window_t);

legend('Rectengular','barlett','hamming','hanning');

title('Windows');

grid;

%figure(3);

%subplot(221);

%plot(w1,20*log10(abs(h1)));

OUTPUT

EC333 Digital Signal Processing Lab 65

 Department of ECE,ICET

EC333 Digital Signal Processing Lab 66

 Department of ECE,ICET

RESULT

Wrote and executed a MATLAB program to generate FIR filter response using

rectangular, hamming, hanning and Bartlett windows.

	LABORATORY MANUAL
	VISION
	To nurture the talents of electronics and communication engineers, making them highly competent for growth of the society.

	MISSION
	 To deliver excellence in teaching - learning process.
	 Promote safe, orderly, caring and supportive environment to learners.
	 Development of skilled engineers to perform innovative Research for betterment of the society.
	 To encourage industry - institute interaction, career advancement, innovation and entrepreneurship development.

	PROGRAM EDUCATIONAL OUTCOME (PEO)
	PEO1: To acquire a strong foundation in mathematics and scientific fundamentals, to develop an ability to analyze various functional elements of different disciplines of electronics and communication engineering.
	PEO2: Develop technical competence to move in pace with rapid changes in technology.
	PEO3: Equip learners to strengthen knowledge and soft skills for carrier advancement.
	PEO4: Adhere to ethics to contribute for betterment of the society.

	PROGRAM SPECIFIC OUTCOMES (PSO)
	PSO1. To understand principles and applications of various electronic components/devices and circuits.
	PSO2. Enable learners to solve complex problems using modern hardware and software tools.

	PART A : Experiments on DSP Kit
	1 TMS320C50 Architecture Overview 1
	2 Generation of Sine Wave & Standard Test Signals 7
	3 Convolution: Linear & Circular 10
	4 Implementation of FIR Filter 14
	5 Implementation of IIR Filter 17
	6 Sampling of Analog Signal 19

	PART B : Experiments based on MATLAB
	7 Familiarization of MATLAB 21
	8 Generation of Waveforms 27
	9 Verification of Sampling Theorem 33
	10 AM & FM Generation 35
	11 Linear& Circular Convolution 42
	12 DFT & IDFT 47
	13 IIR Filter Design-Butterworth & Chebychev 50
	14 FIR Filter -Window Method 62
	1. INTRODUCTION
	2. THE DSP CHIP TMS320C50
	3. KEY FEATURES OF TMS320C50
	4. ARCHITECTURE
	Figure 1.1 TMS320C50 Block Diagram
	16 x 16-Bit Parallel Multiplier
	Shifters
	Data and Program Memory
	Interrupts and Subroutines:
	Serial Port:
	Input and Output:
	SOFTWARE OVERVIEW
	PROGRAM & EXECUTION:
	Micro-50 EB Serial Monitor, Ver.1.0
	#Micro-50 EB Line Assembler, Version 2.0 Enter Address:
	C000H
	Note:
	Exp No 1
	APPARATUS REQUIRED
	PROCEDURE
	PROGRAM
	OBSERVATION
	Exp No 2
	ALGORITHM
	PROGRAM (1)
	INPUT AND OUTPUT SEQUENCE
	INPUT AND OUTPUT SEQUENCE (1)
	RESULT
	Exp No 3
	PROGRAM (2)
	Exp No 4
	PROGRAM (3)
	RESULT (1)
	Exp No 5
	RESULT:

	Familiarization of MATLAB
	1. Definition of Variables
	2. Definition of Matrices
	3. General information
	4. M-files
	5. How to get started??
	Exp No 6
	THEORY
	PROGRAM
	OUTPUT WAVEFORMS
	Exp No: 7
	THEORY (1)
	PROGRAM (1)
	RESULT
	Exp No: 8
	THEORY (2)
	ALGORITHM
	PROGRAM (2)
	OBSERVATIONS
	ALGORITHM (1)
	PROGRAM (3)
	OBSERVATION
	RESULT (1)
	Exp No 9
	THEORY (3)
	ALGORITHM (2)
	PROGRAM (4)
	OUTPUT:
	(b) Circular Convolution AIM
	THEORY (4)
	ALGORITHM (3)
	PROGRAM (5)
	OUTPUT: (1)
	RESULT (2)
	Exp No: 10
	THEORY (5)
	ALGORITHM (4)
	PROGRAM (6)
	IDFT ALGORITHM
	PROGRAM (7)
	OUTPUT
	RESULT (3)
	Exp No: 11
	Important features of IIR filters
	Butterworth Filters
	AIM
	ALGORITHM (5)
	PROGRAM (8)
	OBSERVATIONS (1)
	AIM (1)
	ALGORITHM:
	PROGRAM (9)
	OBSERVATIONS (2)
	AIM:
	ALGORITHM (6)
	PROGRAM (10)
	OBSERVATIONS (3)
	Chebyshev Filters
	AIM (2)
	PROGRAM (11)
	OBSERVATION (1)
	AIM (3)
	PROGRAM (12)
	OBSERVATION (2)
	AIM (4)
	PROGRAM (13)
	OBSERVATION (3)
	RESULT (4)
	Exp No 12
	THEORY (6)
	PROGRAM (14)
	OUTPUT (1)

