

CSL 202 DIGITAL LAB

COMPUTER SCIENCE AND ENGINEERING

Preamble: This course helps the learners to get familiarized with (i) Digital Logic Design
through the implementation of Logic Circuits using ICs of basic logic gates & flip-
flops and (ii) Hardware Description Language based Digital Design. This course helps the
learners to design and implement hardware systems in areas such as games, music, digital
filters, wireless communications and graphical displays.

Prerequisite:Topics covered under the course Logic System Design (CST 203)

Course Outcomes: After the completion of the course the student will be able to

Mapping of course outcomes with program outcomes

CSL 202 DIGITAL LAB
CATEGORY L T P CREDIT

PCC 0 0 3 2

CO 1
Design and implement combinational logic circuits using Logic Gates (Cognitive
Knowledge Level: Apply)

CO 2
Design and implement sequential logic circuits using Integrated Circuits
(Cognitive Knowledge Level: Apply)

CO 3
Simulate functioning of digital circuits using programs written in a Hardware
Description Language (Cognitive Knowledge Level: Apply)

CO 4
Function effectively as an individual and in a team to accomplish a given task of
designing and implementing digital circuits (Cognitive Knowledge Level: Apply)

PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO10 PO11 PO12

CO 1

CO 2

CO 3

CO 4

COMPUTER SCIENCE AND ENGINEERING
Assessment Pattern

Mark Distribution

Continuous Internal Evaluation Pattern:

Attendance : 15 marks

Continuous Evaluation in Lab : 30 marks

Continuous Assessment Test : 15 marks

Viva-voce : 15 marks

Internal Examination Pattern: The marks will be distributed as Design/Algorithm 30
marks, Implementation/Program 20 marks, Output 20 marks and Viva 30 marks. Total 100
marks which will be converted out of 15 while calculating Internal Evaluation marks.

End Semester Examination Pattern:The marks will be distributed as Design/Algorithm 30
marks, Implementation/Program 20 marks, Output 20 marks and Viva 30 marks. Total 100
marks will be converted out of 75 for End Semester Examination.

Bloom’s Category
Continuous Assessment

Test (Internal Exam)
(Percentage)

End Semester
Examination (Percentage)

Remember 20 20

Understand 20 20

Apply 60 60

Analyse

Evaluate

Create

Total Marks CIE Marks ESE Marks ESE Duration

150 75 75 3 hours

COMPUTER SCIENCE AND ENGINEERING
Fair Lab Record:
All Students attending the Digital Lab should have a Fair Record. The fair record should be
produced in the University Lab Examination. Every experiment conducted in the lab should
be noted in the fair record. For every experiment in the fair record, the right hand page should
contain Experiment Heading, Experiment Number, Date of Experiment, and Aim of
Experiment. The left hand page should contain components used, circuit design or a print out
of the code used for the experiment and sample output obtained.

SYLLABUS

Conduct a minimum of 8 experiments from Part A and a minimum of 4 experiments from
Part B. The starred experiments in Part A are mandatory. The lab work should be conducted
in groups (maximum group size being 4). The performance of a student in the group should
be assessed based on teamwork, integrity and cooperation.

Part A (Any 8 Experiments)

• A 2 hour session should be spent to make the students comfortable with the use of
trainer kit/breadboard and ICs.

• The following experiments can be conducted on breadboard or trainer kits.
• Out of the 15 experiments listed below, a minimum of 8 experiments should be

completed by a student, including the mandatory experiments (5).

1. Realization of functions using basic and universal gates (SOP and POS forms).
2. Design and realization of half adder, full adder, half subtractor and full subtractor using:

a) basic gates (b) universal gates. *
3. Code converters: Design and implement BCD to Excess 3 and Binary to Gray code

converters.
4. Design and implement 4 bit adder/subtractor circuit and BCD adder using IC7483.
5. Implementation of Flip Flops: SR, D, T, JK and Master Slave JK Flip Flops using basic

gates.*
6. Asynchronous Counter: Design and implement 3 bit up/down counter.
7. Asynchronous Counter: Realization of Mod N counters (At least one up counter and one

down counter to be implemented). *
8. Synchronous Counter: Realization of 4-bit up/down counter.
9. Synchronous Counter: Realization of Mod-N counters and sequence generators. (At least

one mod N counter and one sequence generator to be implemented) *
10. Realization of Shift Register (Serial input left/right shift register), Ring counter and

Johnson Counter using flipflops. *
11. Realization of counters using IC’s (7490, 7492, 7493).
12. Design and implement BCD to Seven Segment Decoder.
13. Realization of Multiplexers and De-multiplexers using gates.
14. Realization of combinational circuits using MUX & DEMUX ICs (74150, 74154).
15. To design and set up a 2-bit magnitude comparator using basic gates.

COMPUTER SCIENCE AND ENGINEERING
PART B (Any 4 Experiments)

• The following experiments aim at training the students in digital circuit design with
Verilog. The experiments will lay a foundation for digital design with Hardware
Description Languages.

• A 3 hour introductory session shall be spent to make the students aware of the
fundamentals of development using Verilog

• Out of the 8 experiments listed below, a minimum of 4 experiments should be
completed by a student

Experiment 1. Realization of Logic Gates and Familiarization of Verilog
(a) Familiarization of the basic syntax of Verilog
(b) Development of Verilog modules for basic gates and to verify truth tables.
(c) Design and simulate the HDL code to realize three and four variable Boolean

functions

Experiment 2: Half adder and full adder
(a) Development of Verilog modules for half adder in 3 modeling styles (dataflow/

structural/behavioural).
(b) Development of Verilog modules for full adder in structural modeling using half

adder.

Experiment 3: Design of code converters

Design and simulate the HDL code for

(a) 4- bit binary to gray code converter
(b) 4- bit gray to binary code converter

Experiment 4: Mux and Demux in Verilog
(a) Development of Verilog modules for a 4x1 MUX.
(b) Development of Verilog modules for a 1x4 DEMUX.

Experiment 5: Adder/Subtractor
(a) Write the Verilog modules for a 4-bit adder/subtractor
(b) Development of Verilog modules for a BCD adder

Experiment 6: Magnitude Comparator

Development of Verilog modules for a 4 bit magnitude comparator

Experiment 7: Flipflops and shiftregisters
(a) Development of Verilog modules for SR, JK, T and D flip flops.
(b) Development of Verilog modules for a Johnson/Ring counter

Experiment 8: Counters
(a) Development of Verilog modules for an asynchronous decade counter.
(b) Development of Verilog modules for a 3 bit synchronous up-down counter.

COMPUTER SCIENCE AND ENGINEERING
Practice Questions

PART A
1. Design a two bit parallel adder using gates and implement it using ICs of basic gates
2. A combinatorial circuit has 4 inputs and one output. The output is equal to 1 when (a)

all inputs are 1, (b) none of the inputs are 1, (c) an odd number of inputs are equal to
1. Obtain the truth table and output function for this circuit and implement the same.

3. Design and implement a parallel subtractor.
4. Design and implement a digital circuit that converts Gray code to Binary.
5. Design a combinational logic circuit that will output the 1’s compliment of a 4-bit

input number.
6. Implement and test the logic function ! using an 8:1 MUX

IC
7. Design a circuit that will work as a ring counter or a Johnson counter based on a mode

bit, M.
8. Design a 4-bit synchronous down counter.
9. Design a Counter to generate the binary sequence 0,1,3,7,6,4
10. Design an asynchronous mod 10 down counter
11. Design and implement a synchronous counter using JK flip flop ICs to generate the

sequence: 0 - 1 -3 - 5 - 7 - 0.

PART B
1. Develop Verilog modules for a full subtractor in structural modeling using half

subtractors.
2. Design a 4 bit parallel adder using Verilog.
3. Develop Verilog modules for a 4 bit synchronous down counter.
4. Write Verilog code for implementing a 8:1 multiplexer.
5. Develop Verilog modules for a circuit that converts Excess 3 code to binary.
6. Write the Verilog code for a JK Flip flop, and its test-bench. Use all possible

combinations of inputs to test its working
7. Write the hardware description in Verilog of a 8-bit register with shift left and shift

right modes of operations and test its functioning.
8. Write the hardware description in Verilog of a mod-N (N > 9) counter and test it.

f (A, B, C) = ∑ m(0,1,3,6)

CSL 202 DIGITAL LAB DEPT OF ECE ICET

1

LIST OF EXPERIMENTS

CYCLE 1

1. Familiarization of Logic Gates

2. Realization of functions using basic and universal gates (SOP and POS

forms).

3. Design and realization of half adder, full adder, half subtractor and full

subtractor using: a) basic gates (b) universal gates.

4. Implementation of Flip Flops: SR, D, T, JK and Master Slave JK Flip Flops

using basic gates

5. Asynchronous Counter: Realization of Mod N counters

6. Synchronous Counter: Realization of Mod-N counters and sequence

generators

7. Realization of Shift Register (Serial input left/right shift register), Ring

counter and Johnson Counter using flip flops.

8. Realization of Multiplexers and De-multiplexers using gates.

9. Realization of combinational circuits using MUX & DEMUX ICs (74150,

74154).

CSL 202 DIGITAL LAB DEPT OF ECE ICET

2

EXPT NO: 1_ DATE: __/__/__

FAMILIARIZATION OF LOGIC GATES

OBJECTIVE:

To familiarize logic gates.

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity
1. Digital Trainer Kit
2. IC

INTRODUCTION:

A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs a

logical operation on one or more logic inputs and produces a single logic. There are seven basic logic

gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

The AND gate is so named because, if 0 is called "false" and 1 is called "true," the gate acts in the

same way as the logical "and" operator. The output is "true" when both inputs are "true." Otherwise,

the output is "false."

The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive "or."

The output is "true" if either or both of the inputs are "true." If both inputs are "false," then the output

is "false."

A NOT gate sometimes called a logical inverter to differentiate it from other types of electronic

inverter devices, has only one input. It reverses the logic state

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of the

logical operation "and" followed by negation. The output is "false" if both inputs are "true."

Otherwise, the output is "true."

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if both inputs are

"false." Otherwise, the output is "false."

The XOR(exclusive-OR) gate acts in the same way as the logical "either/or." The output is "true" if

either, but not both, of the inputs are "true." The output is "false" if both inputs are "false" or if both

inputs are "true." Another way of looking at this circuit is to observe that the output is 1 if the inputs

are different, but 0 if the inputs are the same.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

3

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its output is

"true" if the inputs are the same, and"false" if the inputs are different

CIRCUIT DIAGRAM AND OBSERVATIONS:

1) AND Gate-7408LS

Truth table

A B O/P

0 0 0

0 1 0

1 0 0

1 1 1

2) OR Gate-7432LS

 Truth table

A B O/P

0 0 0

0 1 1

1 0 1

1 1 1

3) NOT Gate-7404

Truth table

A O/P

0 1

1 0

CSL 202 DIGITAL LAB DEPT OF ECE ICET

4

4) NAND Gate-7400LS

Truth table

A B O/P

0 0 1

0 1 1

1 0 1

1 1 0

5) NOR Gate-7402LS

 Truth table

A B O/P

0 0 1

0 1 0

1 0 0

1 1 0

6) EX-OR Gate-7486LS

 Truth table

A B O/P

0 0 0

0 1 1

1 0 1

1 1 0

CSL 202 DIGITAL LAB DEPT OF ECE ICET

5

7) 3 INPUT NAND Gate-7410LS Truth table

 8) 3 INPUT AND Gate-7411LS

A B C O/P

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

 Truth table

A B C O/P

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

3) Connect the inputs to the input switches provided in the IC Trainer Kit.

4) Connect the outputs to the switches of output LEDs

5) Apply various combinations of inputs according to the truth table and observe condition of LEDs

6) Disconnect output from the LEDs and note down the corresponding multimeter voltage readings

for various combinations of inputs.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

6

CONCLUSION

REVIEW QUESTIONS:

1) Which are the universal logic gates? Why they are called so?

2) What is a logic gate?

3) Implement AND and OR gate using NAND gate

4) Implement OR using NOR gate

5) What is the difference between 54 series and 74 series?

CSL 202 DIGITAL LAB DEPT OF ECE ICET

7

EXPT NO: 2 DATE: __/__/__

IMPLEMENTATION OF GIVEN BOOLEAN EXPRESSION USING LOGIC GATES

IN SOP AND POS FORMS

OBJECTIVE:

To design and implement the given Boolean function using logic gates in sum of product and product

of sum forms.

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity

1. Digital Trainer Kit 1

2. IC 7400 1

 7402 1

 7404 1

 7408LS 1

INTRODUCTION:

 Boolean algebra provides a concise way to express the operation of a logic circuit formed by a

combination of logic gates so that the output can be determined for various combinations of input

values.

 All Boolean expressions regardless of their form can be converted into either of two standard

forms: the sum of products form or the product of sum form. Standardization makes the evaluation,

simplification and implementation of Boolean expressions much more systematic and easier.

THE SUM OF PRODUCTS (SOP) FORM

 When two or more product terms are summed by Boolean addition, the resulting expression is a

sum of products (sop).

Example:

CACDBCA

ABCAB

 AB+ABC+AC

 Implementation of SOP Expression

CSL 202 DIGITAL LAB DEPT OF ECE ICET

8

 Implementing SOP expression simply requires ORing the outputs of two or more

AND gates. A product term is produced by an AND operation and the sum (addition) of two or more

product terms is produced by an OR operation. Therefore, an SOP expression can be implemented by

AND-OR logic in which the outputs of a number (equal to the number of product terms in the

expression) of AND gates connect to the inputs of an OR gate. The output X of the OR gate equals the

SOP expression. A SOP expression can always be implemented with one OR gate and two or more

AND gates.

The standard POS form:

 Any logic expression can be changed in to SOP form by applying Boolean algebra techniques.

 The expression A (B+CD) can be converted to SOP form by applying the distributive law:

 Example:

 A (B+CD) =AB + ACD

 A standard SOP expression is one in which all the variables in the domain appear in each product

term in the expression. Any nonstandard SOP expression can be converted to standard form using

Boolean algebra.

THE PRODUCT-OF-SUM (POS) FORM

 When two or more sum terms are multiplied, the resulting expression is a product-of-sums (POS).

Examples:

))()((

))((

DCCBABA

DCCBA

Implementation of POS expression:

 Implementing a POS expression simply requires ANDing the outputs of two or more OR

gates. A sum term is produced by an OR operation and the product of two or more sum term is

produced by an AND operation. Therefore a POS expression can be implemented by a logic in which

the outputs of number of OR gates connect to the input of an AND gate.

The standard POS form:

A standard POS expression is one in which all the variables in the domain appear in each sum term in

the expression.

Example:

 (A+B+C+D)(A+B+C+D)

 Any nonstandard POS expression can be converted to the standard form using Boolean algebra.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

9

CIRCUIT DIAGRAM AND OBSERVATIONS:

Questions

1) F=∑m(0,1,2,3,4,5,6)

2) F=∑m(1,2,3,6,8,12,14,15)

3) F=∏M(0,3,5)

4) F=∏M(1,2,3,6,8,12,14,15)

CSL 202 DIGITAL LAB DEPT OF ECE ICET

10

EXPERIMENT:

Procedure

7) Place the IC on IC Trainer Kit.

8) Connect VCC and ground to respective pins of IC Trainer Kit .

9) Set up the circuit obtained from the expression

10) Connect the inputs to the input switches provided in the IC Trainer Kit.

11) Connect the outputs to the switches of output LEDs

12) Apply various combinations of inputs according to the truth table and observe condition of LEDs

13) Disconnect output from the LEDs and note down the corresponding multimeter voltage readings

for various combinations of inputs

CONCLUSION

REVIEW QUESTIONS:

1) Map the given expression

 ABCCABCBACBACBAF

2) Map the given expression

)())((CBACBACBAF

3) Minimize the following functions using k-map

F(X1 X2 X3 X4) = ∑m (1, 2, 3, 5, 7, 8, 9) + d (12, 14)

4) Convert the expression into standard form

CAADCBABCD

5) Explain the general procedure to simplify the Boolean expression

CSL 202 DIGITAL LAB DEPT OF ECE ICET

11

EXPT NO: 3 DATE: __/__/__

DESIGN AND IMPLEMENTATION OF ARITHMETIC CIRCUITS

OBJECTIVE:

To design and implement the Arithmetic Circuits

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity
1. Digital Trainer Kit
2. IC

INTRODUCTION:

Half adder

With the help of half adder, we can design circuits that are capable of performing simple addition with

the help of logic gates. The truth table of half adder is shown below. Sum, s is the normal output and

carry, c is the carry-out.

Full adder

This type of adder is a little more difficult to implement than a half-adder. The main difference

between a half-adder and a full-adder is that the full-adder has three inputs and two outputs. The first

two inputs are A and B and the third input is an input carry designated as CIN. When a full adder

logic is designed we will be able to string eight of them together to create a byte-wide adder and

cascade the carry bit from one adder to the next. The output carry is designated as C and the normal

output is designated as S.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

12

CIRCUIT DIAGRAM:

1. Half-Adder using basic gates

2. Half-Adder using NAND gates only

3. Full-Adder using basic gates

CSL 202 DIGITAL LAB DEPT OF ECE ICET

13

4. Full-Adder using NAND gates only

DESIGN:

1) Half adder

Using basic gates

Using NAND Logic

CSL 202 DIGITAL LAB DEPT OF ECE ICET

14

2) Full adder

Using basic gates

Using NAND Logic

CSL 202 DIGITAL LAB DEPT OF ECE ICET

15

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

3) Connect the inputs to the input switches provided in the IC Trainer Kit.

4) Connect the outputs to the switches of output LEDs

5) Apply various combinations of inputs according to the truth table and observe condition of LEDs

6) Disconnect output from the LEDs and note down the corresponding multimeter voltage readings

for various combinations of inputs

OBSERVATIONS:

Truthtable

Half-Adder

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Full Adder

A B CIN S COUT

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

CSL 202 DIGITAL LAB DEPT OF ECE ICET

16

CONCLUSION

REVIEW QUESTIONS:

1. Realize the half adder and full adder using NOR gates

2. Realize the subtractor using (a) basic gates (b) NAND gates (c) NOR gates

3. Design adder/subtractor circuit using 7483 IC

4. Design a BCD adder circuit

5. What are the applications of half adder and full adder?

6. What is a half subtractor and full subtractor?

7. What is a BCD adder?

8. What is a half adder subtractor?

CSL 202 DIGITAL LAB DEPT OF ECE ICET

17

EXPT NO:4 DATE: __/__/__

FLIP FLOPS

OBJECTIVE:

To implement various flip flops using NAND gates and to familiarize the ICs 7474 and 7476

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity
1. Digital Trainer Kit

2. IC

INTRODUCTION:

Flip flops are the basic building blocks in any memory system, since its output will remain in

its state until it is forced to change it by some means.

CLOCKED SR FLIP FLOP

S and R stands for set and reset. There are 4 input combinations possible. But S=R=1 is

forbidden, since the output will be invalid. When the flip flop is switched on, its output state will

be uncertain. When an initial state is to be assigned, two separate inputs called preset and clear are

used. They are active low inputs.

JK FLIP FLOPS

The invalid output state of S-R flip flop, when S=R=1 is avoided by converting it into a J-

K flip flop.

MASTER SLAVE JK FLIP FLOPS

 The race around condition of JK flip flop is rectified in Master Slave JK flip flop. Racing

is the toggling of the output more than once during a positive clock edge. Master Slave JK flip

flop is created by cascading two JK flip flops. The clock fed to the first stage (master) is inverted

and fed to the second stage (slave). This ensures that the slave follows the master eliminates the

chance of racing.

D FLIP FLOP

It has only on input referred to as D input or data input. The input data is transferred to the

output after a clock pulse applied. D flip flop can be derived JK flip flops by using J inputs as D

input and J is inverted and fed to K input.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

18

T FLIP FLOP

T stands for toggle. The output toggles when a clock pulse is applied. That is the output of the

flip flop changes state for an input pulse. T flip flop can be derived from JK flip flop by shorting J

and K inputs.

FLIP FLOP ICS

IC 7476 is dual negative edge triggered MS JK flip flop with preset and clear facility. It

has a 16 pin DIP chip. IC 7473 is a dual negative edge triggering Master Slave JK flip flop with

clear in 14 pin DIP. It does not have preset input. IC 7474 is positive edge triggered dual D flip

flop with preset and clear in 14 pin DIP.

CIRCUIT DIAGRAM AND OBSERVATIONS:

1) SR FLIPFLOP

 LOGIC SYMBOL

Q

Q
SET

CLR

S

R

Clk

Preset

Clear

 SR FLIP FLOP USING GATES

S

R

clk

Qn+1

Qn+1

CSL 202 DIGITAL LAB DEPT OF ECE ICET

19

2) JK FLIP FLOP

 LOGIC SYMBOL

J

Q

Q

K

SET

CLR

Clk

Clear

JK FLIP FLOP USING GATES

J

K

clk

Qn+1

Qn+1

3) MASTER SLAVE JK FLIP FLOP NAND GATES

J

K

clk

Qn+1

Qn+1

CSL 202 DIGITAL LAB DEPT OF ECE ICET

20

4) D FLIPFLOP

 LOGIC SYMBOL

Q

Q
SET

CLR

D
Clk

Preset

Clear

D FLIP FLOP USING GATES

D

Qn+1

Qn+1

Clk

5) T FLIP FLOP

 LOGIC SYMBOL

Q

Q
SET

CLR

D
Clk

Preset

Clear

CSL 202 DIGITAL LAB DEPT OF ECE ICET

21

T FLIP FLOP USING GATES

T

clk

Qn+1

Qn+1

FLIP FLOP ICS

D FLIP FLOP IC- 7474

GND

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

D1 Q1

Q2 Q2

P1C1

P2C2Vcc

Clk1

Clk2

Q1

D1

CSL 202 DIGITAL LAB DEPT OF ECE ICET

22

JK FLIPFLOP IC-7476

GND

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J1 Q1 Q1 K2 Q2 Q2 J2

P1 C1 P2 C2VccK1Clk1 Clk2

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

3) Test all the components and IC packages using multimeter or digital IC tester. Set up the flip

flops using gates and verify their truth table.

4) Verify the truth tables of7474,7476

OBSERVATIONS:

Truthtable

1) SR flipflop

CSL 202 DIGITAL LAB DEPT OF ECE ICET

23

2) JK flipflop

3) Master slave JK flip-flop

4) D flip flop

5) T flip flop

CSL 202 DIGITAL LAB DEPT OF ECE ICET

24

CONCLUSION

REVIEW QUESTIONS:

1) What is a latch?

2) What is edge triggered flipflop?

3) Explain single bit memory element.

4) Explain some applications of flipflops.

5) Explain race around condition?

6) Differentiate combinational and sequential circuits

7) Draw all flipflop IC’s?

CSL 202 DIGITAL LAB DEPT OF ECE ICET

25

EXPT NO: 5 DATE: __/__/__

ASYNCHRONOUS COUNTERS

OBJECTIVE:

To realize asynchronous counters

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity

1. Digital Trainer Kit 1

2. IC 7476, 7486 1

 7400 1

 7473 1

INTRODUCTION:

Asynchronous counter

The term asynchronous refers to events that do not occur at the same time. With respect to

counter operation, asynchronous means that the flip-flops within the counter are not connected in a

way to cause all flip-flops at exactly the same time. They are wired in a way that links the clock of the

next flip-flop to the Q of the current device. This causes the output count states to the ripple through

the counter. A counter is a circuit that produces a set of unique output combinations corresponding to

the number of applied input pulses. The number of unique outputs of a counter is known as its

modulus or mod number. Each flip flop is triggered by the output from the previous flip flop expect

for the first flip flop (LSB) which receives an external clock. Asynchronous counters are commonly

referred to as ripple counters because the effect of the input clock pulse is first felt by FF0.This effect

cannot get to FF1 immediately because of the propagation delay through FF0.

Asynchronous decade counter

The modulus for counters for counters is the number of unique states through which the

counter will sequence. The maximum possible number of states of a counter is 2n, where n is the

number of flip flops in the counter. A decade counter with a count sequence of zero (0000) through

nine (1001) is a BCD decade counter because its ten-state sequence produces the BCD code. This type

of counter is useful in display applications in which BCD is required for conversion to a decimal

readout.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

26

3-bit up/down counter

The direction of counting is decided by a mode control input M.An XOR gate between flip

flop functioning as a controlled inverter connects either of Q or Q bar to the clock input of the

succeeding flip flop as decided by the logic state at M.When mode control is 0,Q outputs get

connected to the clock inputs of the succeeding flip flop and counter counts up. When mode control

is 1, Qbar outputs are connected to the clock inputs and counter counts down.

CIRCUIT DIAGRAM AND DESIGN:

1) Decade counter

Timing diagram

CSL 202 DIGITAL LAB DEPT OF ECE ICET

27

2) 3-bit up/down counter using mode control

Timing diagram

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

28

3) Connect the inputs to the input switches provided in the IC Trainer Kit.

4) Connect the outputs to the switches of output LEDs

5) Apply various combinations of inputs according to the truth table and observe condition

of LEDs

6) Disconnect output from the LEDs and note down the corresponding multimeter voltage

readings for various combinations of inputs

OBSERVATIONS:

Truth table

1) Decade counter

2) 3-bit up/down counter using mode control

CSL 202 DIGITAL LAB DEPT OF ECE ICET

29

CONCLUSION

REVIEW QUESTIONS:

1. Give some applications of all the above circuits.

2. What is the limitation of asynchronous counters?

3. How many flip flops will be complemented in a 10-bit binary ripple counter to reach the next

count after the following counts?

(a) 1001100111

(b) 0011111111

4. Design a circuit which simultaneously divide the input frequency by a factor of 2,4,8.

5. Set up a 4-bit decade down counter to count from 9 to 0.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

30

EXPI NO: 6 DATE: __/__/__

SYNCHRONOUS COUNTERS

OBJECTIVE:

Realization of synchronous counters

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity

1. Digital Trainer Kit 1

2. IC 7476 1

 7400 1

 7408 1

INTRODUCTION:

Synchronous counter

A synchronous counter, in contrast to an asynchronous counter, is one whose output bits change state

simultaneously, with no ripple. The only way we can build such a counter circuit from J-K flip-flops

is to connect all the clock inputs together, so that each and every flip-flop receives the exact same

clock pulse at the exact same.

Asynchronous counter

The term asynchronous refers to events that do not occur at the same time.With respect to counter

operation, asynchronous means that the flip-flops within the counter are not connected in a way to

cause all flip-flops at exactly the same time. They are wired in a way that links the clock of the next

flip-flop to the Q of the current device. This causes the output count states to the ripple through the

counter.

Mod -N Counter

A mod-n counter has n possible states .that means it counts from 0 to n and rolls over it.There must be

a way to force the counter stops counting at n and roll over to 0.This is where the asynchronous inputs

come into play. The asynchronous inputs can override the synchronous inputs and force the output

either at high or low.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

31

DESIGN and CIRCUIT DIAGRAM :

1) 4 bit synchronous up counter

CSL 202 DIGITAL LAB DEPT OF ECE ICET

32

Circuit daigram

CSL 202 DIGITAL LAB DEPT OF ECE ICET

33

Timing diagram

2) 3 bit synchronous up/down counter

Truth Table

Clock
pulse

Present state Next state

 M

0 0 0 0 0 0 0 1

1 0 0 0 1 0 1 0

2 0 0 1 0 0 1 1

3 0 0 1 1 1 0 0

4 0 1 0 0 1 0 1

5 0 1 0 1 1 1 0

6 0 1 1 0 1 1 1

7 0 1 1 1 0 0 0

8 1 0 0 0 1 1 1

9 1 0 0 1 0 0 0

10 1 0 1 0 0 0 1

11 1 0 1 1 0 1 0

12 1 1 0 0 0 1 1

13 1 1 0 1 1 0 0

14 1 1 1 0 1 0 1

15 1 1 1 1 1 1 0

CSL 202 DIGITAL LAB DEPT OF ECE ICET

34

Circuit daigram

3) Mod 10 synchronous counter

Truth Table

Circuit daigram

CSL 202 DIGITAL LAB DEPT OF ECE ICET

35

4) Random sequence generator to generate the sequence ………….

CSL 202 DIGITAL LAB DEPT OF ECE ICET

36

EXPERIMENT:

 Procedure

1. Place the IC on IC Trainer Kit.

2. Connect VCC and ground to respective pins of IC Trainer Kit.

3. Connect the inputs to the input switches provided in the IC Trainer Kit.

4. Connect the outputs to the switches of output LEDs

5. Apply various combinations of inputs according to the truth table and observe condition of

LEDs

6. Disconnect output from the LEDs and note down the corresponding multimeter voltage

readings for various combinations of inputs.

CONCLUSION

The synchronous, asynchronous and mod n counters are designed and implemented.

REVIEW QUESTIONS:

1. Give some applications of all the above circuits.

2. With a neat circuit diagram explain the working of a precision bridge rectifier?

CSL 202 DIGITAL LAB DEPT OF ECE ICET

37

EXPT NO: 7 DATE: __/__/__

SHIFT REGISTERS

OBJECTIVE:

To design and Implement the Shift Registers.

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity

1. Digital Trainer Kit 1

2. IC 7474 1

 7473 1

INTRODUCTION:

Shift register

In digital circuits, a shift register is a cascade of flip flops, sharing the same clock, which has the

output of anyone but the last flip-flop connected to the "data" input of the next one in the chain,

resulting in a circuit that shifts by one position the one-dimensional "bit array" stored in it, shifting in

the data present at its input and shifting out the last bit in the array, when enabled to do so by a

transition of the clock input. More generally, a shift register may be multidimensional; such that its

"data in" input and stage outputs are themselves bit arrays: this is implemented simply by running

several shift registers of the same bit-length in parallel. Shift registers can have both parallel and serial

inputs and outputs. These are often configured as serial-in, parallel-out (SIPO) or as parallel-in, serial-

out (PISO). There are also types that have both serial and parallel input and types with serial and

parallel output.

Serial in serial out shift registers

These are the simplest kind of shift registers. The data string is presented at 'Data In', and is shifted

right one stage each time 'Data Advance' is brought high. At each advance, the bit on the far left (i.e.

'Data In') is shifted into the first flip-flop’s output. The bit on the far right (i.e. 'Data Out') is shifted

out and lost.

Serial in parallel out shift registers

This configuration allows conversion from serial to parallel format. Data is input serially, as described

in the SISO section above. Once the data has been input, it may be either read off at each output

simultaneously, or it can be shifted out and replaced.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

38

Parallel in serial out shift registers

This configuration has the data input on lines D1 through D4 in parallel format. To write the data to

the register, the Write/Shift control line must be held LOW. To shift the data, the W/S control line is

brought HIGH and the registers are clocked. The arrangement now acts as a SISO shift register, with

D1 as the Data Input. However, as long as the number of clock cycles is not more than the length of

the data-string, the Data Output, Q, will be the parallel data read off in order.

CIRCUIT DIAGRAM :

1) Serial in serial out shift register

2) Serial in parallel out shift register

CSL 202 DIGITAL LAB DEPT OF ECE ICET

39

3) Parallel in parallel out shift register

4) Parallel in serial out shift register

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

40

3) Connect the inputs to the input switches provided in the IC Trainer Kit.

4) Connect the outputs to the switches of output LEDs

5) Apply various combinations of inputs according to the truth table and observe condition of LEDs

6) Disconnect output from the LEDs and note down the corresponding multimeter voltage readings

for various combinations of inputs

OBSERVATIONS:

Truthtable

Serial in serial out shift register

Serial in parallel out shift register

Parallel in parallel out shift register

CSL 202 DIGITAL LAB DEPT OF ECE ICET

41

Parallel in serial out shift register

CONCLUSION

.

REVIEW QUESTIONS:

1) Explain how to multiply or divide a binary number by using shift registers?

2) Distinguish between shift registers and counters?

CSL 202 DIGITAL LAB DEPT OF ECE ICET

42

RING COUNTER AND JOHNSON COUNTER

OBJECTIVE:

To design and Implement counters using shift registers – Ring Counter and Johnson Counter.

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity

1. Digital Trainer Kit 1

2. IC 7473 1

 7474 1

INTRODUCTION:

Ring Counter

A ring counter is basically a circulating shift register in which the output of the MSB is fed

back to the input of the LSB. Here the 4 bit ring counter is constructed using D flip-flops. The output

of each stage is shifted into the next stage on the positive edge of a clock pulse. Here the clear signal

is high, all the flip-flops except first one FF are reset to 0.FF0 is preset to 1 instead.

Johnson Counter

They are a variation of standard ring counters, with the inverted output of the last stage fed

back to the first stage.They are also known as twisted ring counters. An n-stage Johnson counter

yields a count sequence of length 2n,so it may be considered to be mod 2n counter.

CIRCUIT DIAGRAM

1) Ring Counter

+5

V

D
Preset

Q

Q

Clr

D

FF

D
Preset

Q

Q

Clr

D

FF

D
Preset

 Q

Q

Clr

D

FF

D
Preset

Q

Q

Clr

D

FF

+5

V

CL

K

Q3

Q0 Q1 Q2

CSL 202 DIGITAL LAB DEPT OF ECE ICET

43

2) Johnson Counter

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

3) Connect the inputs to the input switches provided in the IC Trainer Kit.

4) Connect the outputs to the switches of output LEDs

5) Apply various combinations of inputs according to the truth table and observe condition of

LEDs

OBSERVATIONS:

Truthtable

Ring Counter

Clock

Pulse
Q3 Q2 Q1 Q0

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 1 0 0 0

Johnson Counter

Clock Pulse Q3 Q2 Q1 Q0
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1
4 1 1 1 1
5 1 1 1 0
6 1 1 0 0
7 1 0 0 0
8 0 0 0 0

D
Preset

Q

Q

Clr

D FF

D
Preset

Q

Q

Clr

D FF

D
Preset

 Q

Q

Clr

D FF

D
Preset

Q

Q

Clr

D FF

+5V

CLK

Q3 Q2 Q1 Q0

+5V

CSL 202 DIGITAL LAB DEPT OF ECE ICET

44

REVIEW QUESTIONS:

1) With an example explain self starting counter?

2) What are shift register counters?

3) What do you meant by lock-out of a counter?

4) Differentiate Ring counter and Johnson counter?

CONCLUSION:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

45

EXPT NO: 8 DATE: __/__/__

DESIGN AND IMPLEMENTATION OF MULTIPLEXER AND DEMULTIPLEXER

OBJECTIVE:

To design and implement multiplexer and demultiplexer.

HARDWARE REQUIRED:

SLNo. Components/Equipments Specification Quantity

1. Digital Trainer Kit

2. IC 74151 1

 74154 1

INTRODUCTION:

MULTIPLEXER:

Multiplexer means transmitting a large number of information units over a smaller number of

channels or lines. A digital multiplexer is a combinational circuit that selects binary information from

one of many input lines and directs it to a single output line. The selection of a particular input line is

controlled by a set of select lines. Normally there are 2n input lines and n selection lines whose bit

combination determines which input is selected.

DEMULTIPLEXER:

 The function of Demultiplexer is in contrast to multiplexer function. It takes information from

one line and distributes it to a given number of output lines. For this reason, the demultiplexer is also

known as a data distributor. Decoder can also be used as demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates. The data select lines

enable only one gate at a time and the data on the data input line will pass through the selected gate to

the associated data output line.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

46

CIRCUIT DIAGRAM :

 8:1 MULTIPLEXER:

 VCC

 D0

 D1

 D2

 D3 DATA OUT

 D4

 D5

 D6

 D7

 GND

 E S0 S1 S2

 DATA SELECT

4:1 MULTIPLEXER:

 16

 5

 74151

8

 7 9 10 11

CSL 202 DIGITAL LAB DEPT OF ECE ICET

47

FUNCTION TABLE:

S1 S0 INPUTS Y

0 0 D0 → D0 S1’ S0’

0 1 D1 → D1 S1’ S0

1 0 D2 → D2 S1 S0’

1 1 D3 → D3 S1 S0

Y = D0 S1’ S0’ + D1 S1’ S0 + D2 S1 S0’ + D3 S1S0

CSL 202 DIGITAL LAB DEPT OF ECE ICET

48

1:16 DECODER / DEMULTIPLEXER:

 VCC

 A Y0

 B Y1

 C Y2

 D Y3

 Y4

 Y5

 Y6

 Y7

 Y8

 DATA Y9

 Y10

 STROBE Y11

 Y12

 Y13

 Y14

 Y15

 GND

 24

20

21

22

23

 74154

18

19

 12

CSL 202 DIGITAL LAB DEPT OF ECE ICET

49

 1:4 DEMULTIPLEXER:

FUNCTION TABLE:

S1 S0 INPUT

0 0 X → D0 = X S1’ S0’

0 1 X → D1 = X S1’ S0

1 0 X → D2 = X S1 S0’

1 1 X → D3 = X S1 S0

Y = X S1’ S0’ + X S1’ S0 + X S1 S0’ + X S1 S0

EXPERIMENT:

Procedure

1) Place the IC on IC Trainer Kit.

2) Connect VCC and ground to respective pins of IC Trainer Kit.

3) Connect the inputs to the input switches provided in the IC Trainer Kit.

4) Connect the outputs to the switches of output LEDs

5) Apply various combinations of inputs according to the truth table and observe condition

of LEDs

CSL 202 DIGITAL LAB DEPT OF ECE ICET

50

DESIGN:

1. Implement F(A,B,C,D) = Σ(0,3,5,6,8,9,14,15) using IC 74151

CSL 202 DIGITAL LAB DEPT OF ECE ICET

51

2. Implement F = A'B'CD'+ A'BC'D' + A'BCD + AB'C'D' using IC 74154.

OBSERVATIONS:

Truth table for multiplexer using gates.

S1 S0 Y = OUTPUT

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Truth table for Demultiplexer using gates.

INPUT OUTPUT

S1 S0 I/P D0 D1 D2 D3

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 0

1 1 1 0 0 0 1

Truth table for Multiplexer and Demultiplexer using ICs.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

52

CONCLUSION:

REVIEW QUESTIONS:

1. What is meant by multiplexer?

2. What does De- multiplexer mean?

3. Design a full adder using 8X1 multiplexer?

4. Role of Mux in digital Circuit?

5. Write the applications of multiplexer and demultiplexer?

CSL 202 DIGITAL LAB DEPT OF ECE ICET

53

CYCLE-II

CSL 202 DIGITAL LAB DEPT OF ECE ICET

54

LIST OF EXPERIMENTS

1. Realization of logic gates and familiarization of verilog.

2. Half Adder &Full Adder in verilog.

3. Mux and Demux in verilog.

4. Flipflops and shift registers .

5. Counters

CSL 202 DIGITAL LAB DEPT OF ECE ICET

55

FAMILIARIZATION OF VERILOG

Digital systems are highly complex. At their most detailed level, they may consist of

millions of elements, such as a collection of logic gates or transistors. Hardware description

languages have evolved to aid in the design of systems with this large number of elements

and wide range of electronic and logical abstractions . Hardware description languages have

been developed for modeling and simulating hardware functions. Difference between

standard programming languages and hardware description languages:

– Standard programming languages: sequential

– HDLs: describe parallel and concurrent behavior

There are two standard HDLs that are supported by IEEE: VHDL and Verilog HDL. The

HDL used in our lab will be Verilog.

INTRODUCTION TO VERILOG HDL

Verilog is a Hardware Description Language (HDL) which is used to model electronic

systems. It provides the designer entry into the world of large, complex digital systems

design. The Verilog language provides the digital system designer with a means of describing

a digital system at a wide range of levels of abstraction, and, at the same time, provides

access to computer-aided design tools to aid in the design process at these levels. It also

fulfils the need for verifying the design for functionality and timing constraints like

propagation delay setup and hold times. The components of the target design can be

described at different levels with the help of constructs in Verilog.

1. Circuit Level/ Switch Level :MOS switch is the basic element which can be used to build

basic circuits like inverters, logic gates, 1-bit dynamic and static memories.

2. Gate Level or structural level: Design is carried out in terms of basic gates. All basic gates

are available as ready modules called “primitives”. Primitives can be incorporated into design

descriptions directly.

3. Data Flow Level: All possible operations on signals and variables are represented in terms

of assignments.

4. Behavioral Level: This level describes a system by concurrent algorithms and the design

description looks like a C program. Compactness and the comprehensive nature of the design

description make the development process fast and efficient. Functions, Tasks and always

blocks are the main elements.

LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

CSL 202 DIGITAL LAB DEPT OF ECE ICET

56

Verilog has its own constructs and conventions. Any source file in Verilog is made up

of number of ASCII characters. These characters are grouped into sets - referred to as “lexical

tokens”. Verilog has 7 types of lexical tokens - operators, keywords, identifiers, white

spaces,comments, numbers and strings. Verilog is case sensitive, so all keywords are in lower

case.

White Space Characters

Blanks(\b), tabs (\t), newlines (\n) and form feed form the white space characters in Verilog.

In any design description the white space characters are included to improve readability.

White space characters have significance only when they appear in string.

Comments

Comments are incorporated in two ways.

// begins a single line comment, terminated by a newline.

/*begins a multi-line block comment, terminated by a */.

For Example;

Module D_FF (Q,DP,CLK); //This is the design of a D flip-flop.

/* Here Q is the output.DP is the input and CLK is the clock.*/

Keywords

The keywords define the language constructs. All keywords in Verilog are in small letters

and require to be used as such.

Some of the examples are:

module ---signifies the beginning of a module definition.

endmodule ---signifies the end of module definition.

begin signifies--- the beginning of block of statements.

end -signifies the end of a block of statements.

if signifies a conditional activity to be checked.

assign -assigns a value or an expression to a net or variable.

Identifiers

Identifiers are user-defined words for variables, function names, module names, block names

and instance names. Identifiers begin with a letter or underscore and can include any number

of letters, digits and underscores. Identifiers in Verilog are case sensitive.

Numbers

The numbers can be of integer type or real type.

Integer Numbers

CSL 202 DIGITAL LAB DEPT OF ECE ICET

57

Number storage is defined as a number of bits, but values can be specified in binary, octal,

decimal or hexadecimal. The representation has three tokens with an optional sign preceding

it. Numbers may be sized or unsized. Unsized integers default to at least 32 bits.

Syntax: size’base value

Examples:

 Integer stored As Description

1 00000000000000000000000000000001 Unsized 32 bits

8’h AA 10101010 Sized hexadecimal

3’b001 001 3 bit number

9’o123 001 010 011 9 bit octal number

9’h?A zzzzz1010 5 bit Hex number.

String

A string is a sequence of characters enclosed by double quotes. It must be contained on a

single line. Verilog treats a string as a sequence of ASCII characters.

Logical Values

Verilog uses a 4 value logic system for modelling.

 Logical Value Description

 0 Zero , low or false

 1 One, high or true

 Z or z High impedance (tri-state or floating)

 X or x Unknown or uninitialized (don’t care)

Data Types

Verilog has two major data type classes:

1) Net Data type

2) Variable data type.

Nets:Net data types are used to make connections between parts of a design. Nets reflect the

value and strength level of the drivers of the net or the capacitance of the net, and do not have

a value of their own. A net can be specified in different ways.

Wire

A wire (or net) represents a physical wire in a circuit and is used to connect gates or modules.

The value of a wire can be read, but not assigned to, in a function or block. A wire does not

store its value but must be driven by a continuous assignment statement or by connecting it to

the output of a gate or module.

Syntax:wire [msb: lsb] wire_variable_list;

CSL 202 DIGITAL LAB DEPT OF ECE ICET

58

Example

wire c; //declare a wire c

Variable data types

Variable data types are used as temporary storage of programming data. Variables can only

be assigned a value from within an initial procedure, an always procedure, a task or a

function. Variables can only store logic values; they cannot store logic strength. Variables are

un-initialized at the start of simulation, and will contain logic X until a value is assigned.

Variables can be declared trough a keyword reg.

Reg

A reg(register) is a data object that holds its value from one procedural assignment to the

next. They are used only in functions and procedural blocks. A reg is a Verilog variable type

and does not necessarily imply a physical register.

Syntax: reg [msb: lsb] reg_variable_list;

Example

reg a; // single 1-bit register variable

reg [7:0] r_vector; // an 8-bit vector; a bank of 8 registers.

Scalars and Vectors

Entities representing single bits are called “scalars”. Often multiple lines carry signals in a

cluster like data bus or address bus. The group of regs is treated as “vector”.

Verilog Module

Verilog language uses a hierarchical, functional unit based design approach. The

whole design consists of several smaller modules. The complexity of the modules is decided

by the designer

Verilog module:

– Definition of the input and output ports

– Definition of the logical relationship between the input and output ports

Port declaration syntax:

<direction> <data_type> <size> <port_name>;

• Direction:

– Input port: input

– Output port: output

– Bi‐directional:inout

Verilog language uses a hierarchical, functional unit based design approach:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

59

– The whole design consists of several smaller modules

– The complexity of the modules is decided by the designer

Module Syntax:

module module_name (port_list);

input [msb:lsb] input_port_list;

output [msb:lsb] output_port_list;

inout [msb:lsb] inout_port_list;

 ... statements ...

endmodule

Operators

Arithmetic Operators

These perform arithmetic operations.

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

%(modulus)

Relational Operators

Relational operators compare two operands and return a single bit 1or 0. These operators

synthesize into comparators.

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

== (equal to)

!= (not equal to)

Bit-wise Operators

Bit-wise operators do a bit-by-bit comparison between two operands

~ (bitwise NOT)

& (bitwise AND)

| (bitwise OR)

^ (bitwise XOR)

~^ or ^~(bitwise XNOR)

Logical Operators

CSL 202 DIGITAL LAB DEPT OF ECE ICET

60

Logical operators return a single bit 1 or 0. They are the same as bit-wise operators only for

single bit operands. They can work on expressions, integers or groups of bits, and treat all

values that are nonzero as “1”. Logical operators aretypically used in conditional (if ... else)

statements since they work with expressions.

! (logical NOT)

&& (logical AND)

|| (logical OR)

Concatenation Operator

The concatenation operator combines two or more operands to form a larger vector.

{}(concatenation)

CSL 202 DIGITAL LAB DEPT OF ECE ICET

61

EXPERIMENT NO: 01 DATE:

BASIC GATES/UNIVERSAL GATES

AIM: To write a verilog description for: a)AND Gate b)OR Gate c)NOT Gate

 d)NAND Gate e)NOR Gate f)XOR Gate g)XNOR Gate

SOFTWARE REQUIRED: ModelSIM

LOGIC DIAGRAM and TRUTH TABLE:

a) AND Gate:

b) OR Gate:

c) NOT Gate:

d) NAND Gate:

e) NOR Gate:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

62

f) XOR Gate:

g) XNOR Gate:

PROGRAM:

a) AND Gate:

module and_gate(Y,A,B);

input A,B;

output Y;

assign Y=A&B;

endmodule

b) OR Gate:

module or_gate(A,B,Y);

 input A,B;

 output Y;

 assign Y=A|B;

endmodule

c) NOT Gate:

module not_gate(A,Y);

 input A;

CSL 202 DIGITAL LAB DEPT OF ECE ICET

63

 output Y;

 assign Y=~A;

endmodule

d) NAND Gate:

module nand_gate(A,B,Y);

 input A,B;

 output Y;

 assign Y=~(A&B);

endmodule

e) NOR Gate:

module nor_gate(A,B,Y);

 input A,B;

 output Y;

 assign Y=~(A|B);

endmodule

f) XOR Gate:

module xor_gate(A,B,Y);

 input A,B;

 output Y;

 assign Y=A^B;

endmodule

g) XNOR Gate:

module xnor_gate(A,B,Y);

 input A,B;

 output Y;

 assign Y=A~^B;

endmodule

OUTPUT:

a) AND Gate:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

64

b) OR Gate:

c) NOT Gate:

d) NAND Gate:

e) NOR Gate:

f) XOR Gate:

g) XNOR Gate:

RESULT:

Basic gates are realized using verilog and simulation completed successfully.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

65

EXPERIMENT NO: 02 (A) DATE:

COMBINATIONAL CIRCUITS-HALF ADDER/HALF SUBTRACTOR

AIM: To write a verilog description for the combinational circuits: a)Half adder b)half

subtractor.

SOFTWARE REQUIRED: ModelSIM

LOGIC DIAGRAM and TRUTH TABLE:

a) Half adder:

Half adder is a combinational arithmetic circuit that adds two numbers and produces

a sum bit (S) and carry bit (C) as the output. If A and B are the input bits, then sum bit (S) is

the X-OR of A and B and the carry bit (C) will be the AND of A and B. From this it is clear

that a half adder circuit can be easily constructed using one X-OR gate and one AND gate.

Half adder is the simplest of all adder circuit, but it has a major disadvantage. The half adder

can add only two input bits (A and B) and has nothing to do with the carry if there is any in

the input. So if the input to a half adder have a carry, then it will be neglected it and adds only

the A and B bits. That means the binary addition process is not complete and that’s why it is

called a half adder.

S= C=

b) Half subtractor:

The half-subtractor is a combinational circuit which is used to perform subtraction of two

bits. It has two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and

B (borrow).

CSL 202 DIGITAL LAB DEPT OF ECE ICET

66

D= Bo=

PROGRAM:

a) Half adder:

module halfadder(A,B,S,C);

 input A,B;

 output S,C;

 assign S=A^B;

 assign C=A&B;

endmodule

b) Half subtractor:

module halfsubtractor(A,B,D,B0);

 input A,B;

 output D,B0;

 assign D=A^B;

 assign B0=~A&B;

endmodule

OUTPUT:

a) Half adder:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

67

b) Half subtractor:

RESULT:

Half adder and half subtractor are realized using verilog and simulation completed

successfully.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

68

(B) FULL ADDER IN 3 MODELLING STYLES

AIM: Write a verilog description for full adder in: a)Dataflow modeling b)Structural

modeling c)Behavioural modeling.

SOFTWARE REQUIRED: ModelSIM

LOGIC DIAGRAM and TRUTH TABLE:

Full adder is a logic circuit that adds two input operand bits plus a Carry in bit and outputs a

Carry out bit and a sum bit.. The Sum out (Sout) of a full adder is the XOR of input operand

bits A, B and the Carry in (Cin) bit.

PROGRAM:

a) Dataflow modeling:

module fulladder_dataflow(A,B,Cin,S,Cout);

output S,Cout;

input A,B,Cin;

CSL 202 DIGITAL LAB DEPT OF ECE ICET

69

assign S=A^B^Cin;

assign Cout=(A&B)|((A^B)&Cin);

endmodule

b) Structural modeling:

module fulladder_struct(A,B,Cin,S,Cout);

output S,Cout;

input A,B,Cin;

wire p,q,r;

xor x1(p,A,B);

xor x2(S,p,Cin);

and A1(q,p,Cin);

and A2(r,A,B);

or OR(Cout,q,r);

endmodule

c) Behavioural modeling:

module fulladder_behavioural(A,B,Cin,S,Cout);

output reg S,Cout;

input A,B,Cin;

always@(A,B,Cin)

 begin

 {Cout,S}=A+B+Cin;

 end

endmodule

OUTPUT:

a) Dataflow modelling:

b) Structural modelling:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

70

c) Behavioural modelling:

RESULT:

Verilog code for full adder was written using dataflow, structural and behavioral modeling

and simulated successfully.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

71

EXPERIMENT NO: 03 DATE:

MULTIPLEXER /De-MULTIPLEXER

AIM: Write a verilog description for: a)Multiplexer b)De-Multiplexer using dataflow

modelling.

 SOFTWARE REQUIRED: ModelSIM

LOGIC DIAGRAM and TRUTH TABLE:

a) Multiplexer:

Multiplexer means many into one. A multiplexer is a circuit used to select and route

any one of the several input signals to a signal output. An simple example of an non

electronic circuit of a multiplexer is a single pole multiposition switch. A multiplexer is a

circuit that accept many input but give only one output.

A multiplexer has 2n data inputs, n control inputs and 1 output.

b) De-Multiplexer:

De-multiplexer is also a device with one input and multiple output lines. It is used to

send a signal to one of the many devices. A de-multiplexer has 2n data outputs, n control

inputs and 1 input.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

72

PROGRAM:

a) Multiplexer:

module mux4_1(in,s0,s1,out);

 input s0,s1;

 input [3:0]in;

 output out;

 assign out=(~s1&~s0&in[0])|(~s1&s0&in[1])|(s1&~s0&in[2])|(s1&s0&in[0]);

endmodule

b) De-Multiplexer:

module demux1_4(in,s0,s1,out);

 input s0,s1,in;

 output [3:0]out;

 assign out[0]=~s1&~s0∈

 assign out[1]=~s1&s0∈

 assign out[2]=s1&~s0∈

 assign out[3]=s1&s0∈

endmodule

CSL 202 DIGITAL LAB DEPT OF ECE ICET

73

OUTPUT:

a) Multiplexer:

b) De-Multiplexer:

RESULT:

 Verilog code for 4:1 multiplexer and 1:4 demultiplexer were written using dataflow

modelling and simulated successfully.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

74

EXPERIMENT NO: 04 DATE:

FLIPFLOPS(SR,JK,T,D)

AIM: Write a verilog description for: a)SR b)JK c)T d)D flipflops using behavioral

modelling.

 SOFTWARE REQUIRED: ModelSIM

LOGIC DIAGRAM and TRUTH TABLE:

In electronics, a flip-flop or latch is a circuit that has two stable states and can be used

to store state information. A flip-flop is a bistable multivibrator. The circuit can be made to

change state by signals applied to one or more control inputs and will have one or two

outputs. It is the basic storage element in sequential logic. Flip-flops and latches are

fundamental building blocks of digital electronics systems used in computers,

communications, and many other types of systems.

A flip-flop is a special type of gated latch. The difference between a flip-flop and a

gated latch is that in a flip-flop, the inputs aren't enabled merely by the presence of a HIGH

signal on the CLOCK input. Instead, the inputs are enabled by the transition of the CLOCK

input. Thus, at the moment that the clock input transitions from low to high, the inputs are

briefly enabled. Once the clock stabilizes at the HIGH setting, the output state of the flip-flop

is latched until the next clock pulse.

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Bistable_multivibrator
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Digital_electronics

CSL 202 DIGITAL LAB DEPT OF ECE ICET

75

PROGRAMME:

a) SR flipflop:

module srff(q,q1,r,s,clk);

 output q,q1;

 input r,s,clk;

 reg q,q1;

 initial

 begin

 q=1'b0;

 q1=1'b1;

 end

 always @(posedge clk)

 begin

CSL 202 DIGITAL LAB DEPT OF ECE ICET

76

 case({s,r})

 {1'b0,1'b0}: begin q=q; q1=q1; end

 {1'b0,1'b1}: begin q=1'b0; q1=1'b1; end

 {1'b1,1'b0}: begin q=1'b1; q1=1'b0; end

 {1'b1,1'b1}: begin q=1'bx; q1=1'bx; end

 endcase

 end

endmodule

b) JK flipflop:

module jkff(q,q1,j,k,clk);

 output q,q1;

 input j,k,clk;

 reg q,q1;

 initial

 begin

 q=1'b0;

 q1=1'b1;

 end

 always @(posedge clk)

 begin

 case({j,k})

 {1'b0,1'b0}: begin q=q; q1=q1; end

 {1'b0,1'b1}: begin q=1'b0; q1=1'b1; end

 {1'b1,1'b0}: begin q=1'b1; q1=1'b0; end

 {1'b1,1'b1}: begin q=~q; q1=~q1; end

 endcase

 end

endmodule

c) T flipflop:

module tff(q,q1,t,clk);

output q,q1;

input t,clk;

CSL 202 DIGITAL LAB DEPT OF ECE ICET

77

reg q,q1;

initial

 begin

 q=1'b0;

 q1=1'b1;

 end

always@(posedge clk)

begin

 if(t==0)

 begin

 q<=q;

 q1<=q1;

 end

 else

 begin

 q<=~q;

 q1<=~q1;

 end

end

endmodule

d) D flipflop:

module dff(q,q1,d,clk);

output q,q1;

input d,clk;

reg q,q1;

initial

 begin

 q=1'b0;

 q1=1'b1;

 end

always@(posedge clk)

begin

q<=d;

CSL 202 DIGITAL LAB DEPT OF ECE ICET

78

q1<=~d;

end

endmodule

OUTPUT:

a) SR flipflop

b) JK flipflop:

c) T flipflop:

d) D flipflop:

RESULT:

 Verilog description for SR, JK,T and D flipflops were written using behavioral

modeling and simulated successfully.

CSL 202 DIGITAL LAB DEPT OF ECE ICET

79

EXPERIMENT NO: 05 DATE:

BINARY COUNTERS

AIM: Write a verilog description for binary counters : a) synchronous 4-bit up counter b)

asynchronous decade counter c)ring counter d)Johnson counter using behavioral modelling.

 SOFTWARE REQUIRED: ModelSIM

LOGIC DIAGRAM and TRUTH TABLE:

A counter is a sequential circuit that counts in a cyclic sequence. It is essentially

a register that goes through a predetermined sequence of states upon the application of input

pulses. There are two types of counters – Synchronous Counter & Asynchronous Counter.

Synchronous Counter

In a synchronous counter, the input pulses are applied to all clock pulse inputs of all flip

flops simultaneously (directly). Synchronous counter is also known as parallel sequential

circuit. Examples of Synchronous Counters are as below:

 Ring Counter

 Johnson Counter (Switch Tail or Twisted Ring Counter)

Asynchronous Counter

In an asynchronous counter, the flip flop output transition serves as a source for triggering

other flip flops. In other words, the clock pulse inputs of all flip flops, except the first, are

triggered not by the incoming pulses, but rather by the transition that occurs in previous flip

flop’s output.. Asynchronous counter is also known as serial sequential circuit. Example of

Asynchronous Counters are as below:

 Binary Ripple Counter

 Up Down Counter

Synchronous counters are faster than asynchronous counter because in synchronous counter

all flip flops are clocked simultaneously.

 In synchronous counters, the clock input is connected to all of the flip-flop so that

they are clocked simultaneously. An asynchronous counter is one in which the flip-flop

http://verticalhorizons.in/difference-between-combinational-and-sequential-circuit/
http://verticalhorizons.in/shift-registers-in-digital-electronics/
http://verticalhorizons.in/ring-counter-in-digital-electronics/
http://verticalhorizons.in/johnson-counter-in-digital-electronics/
http://verticalhorizons.in/flip-flops-in-digital-electronics/
http://verticalhorizons.in/binary-ripple-counter-in-digital-electronics/
http://verticalhorizons.in/up-down-counter-in-digital-electronics/

CSL 202 DIGITAL LAB DEPT OF ECE ICET

80

within the counter do not change states at exactly the same time because they do not have a

common clock pulse.

a) Synchronous 4-bit upcounter:

b) Asynchronous decade counter:

c) Ring counter:

CSL 202 DIGITAL LAB DEPT OF ECE ICET

81

d) Johnson counter:

PROGRAMME:

a) Synchronous 4-bit upcounter:

module upcount_4bit(q,clk,res);

 input clk,res;

 output [3:0]q;

 reg [3:0]q;

 always@(posedge clk)

 begin

 if(res==1)

 begin

 q<=4'b0000;

 end

 else

CSL 202 DIGITAL LAB DEPT OF ECE ICET

82

 begin

 q<=q+1;

 end

 end

endmodule

b) Asynchronous decade counter:

module decadecounter(q,clk,res);

 input clk,res;

 output [3:0]q;

 reg [3:0]q;

 always@(posedge clk)

 begin

 if(res==1)

 begin

 q<=4'b0000;

 end

 else if(q>=4'b1001)

 begin

 q<=4'b0000;

 end

 else

 begin

 q<=q+4'b0001;

 end

 end

endmodule

c) Ring counter:

module ringcounter(q,clk,res);

 input clk,res;

 output [3:0]q;

 reg [3:0]q;

 always@(posedge clk)

 begin

CSL 202 DIGITAL LAB DEPT OF ECE ICET

83

 if(res==1)

 begin

 q<=4'b1000;

 end

 else

 begin

 q[3]<=q[0];

 q[2]<=q[3];

 q[1]<=q[2];

 q[0]<=q[1];

 end

 end

endmodule

d) Johnson counter:

module johnsoncounter(q,clk,res);

 input clk,res;

 output [3:0]q;

 reg [3:0]q;

 always@(posedge clk)

 begin

 if(res==1)

 begin

 q<=4'b0000;

 end

 else

 begin

 q[3]<=~q[0];

 q[2]<=q[3];

 q[1]<=q[2];

 q[0]<=q[1];

 end

 end

endmodule

CSL 202 DIGITAL LAB DEPT OF ECE ICET

84

OUTPUT:

a) Synchronous 4-bit upcounter:

b) Asynchronous decade counter:

c)Ring counter:

e) Johnson counter:

RESULT:

Verilog description for synchronous 4-bit up counter, asynchronous decade counter, ring

counter and Johnson counter were written using behavioral modeling and simulated

successfully.

	To familiarize logic gates.
	Procedure
	THE SUM OF PRODUCTS (SOP) FORM
	AB+ABC+AC
	Implementation of SOP Expression
	A (B+CD) =AB + ACD
	THE PRODUCT-OF-SUM (POS) FORM
	Any nonstandard POS expression can be converted to the standard form using Boolean algebra.
	Questions
	Procedure (1)
	DESIGN AND IMPLEMENTATION OF ARITHMETIC CIRCUITS
	To design and implement the Arithmetic Circuits
	Half adder
	Full adder
	Using basic gates
	Using NAND Logic
	Using basic gates (1)
	Using NAND Logic (1)
	Procedure (2)
	Truthtable
	Half-Adder
	Full Adder
	FLIP FLOPS
	To implement various flip flops using NAND gates and to familiarize the ICs 7474 and 7476
	CLOCKED SR FLIP FLOP
	JK FLIP FLOPS
	MASTER SLAVE JK FLIP FLOPS
	D FLIP FLOP
	T FLIP FLOP
	FLIP FLOP ICS
	LOGIC SYMBOL
	SR FLIP FLOP USING GATES
	LOGIC SYMBOL (1)
	D FLIP FLOP USING GATES
	LOGIC SYMBOL (2)
	T FLIP FLOP USING GATES
	Procedure (3)
	Truthtable (1)
	ASYNCHRONOUS COUNTERS
	To realize asynchronous counters
	Asynchronous counter
	Asynchronous decade counter
	Timing diagram
	Procedure (4)
	Truth table
	SYNCHRONOUS COUNTERS
	Realization of synchronous counters
	Synchronous counter
	Asynchronous counter (1)
	Mod -N Counter
	Procedure (5)
	The synchronous, asynchronous and mod n counters are designed and implemented.
	SHIFT REGISTERS
	To design and Implement the Shift Registers.
	Serial in serial out shift registers
	Serial in parallel out shift registers
	Parallel in serial out shift registers
	Procedure (6)
	Truthtable (2)
	Serial in serial out shift register
	Serial in parallel out shift register
	Parallel in parallel out shift register
	Parallel in serial out shift register
	RING COUNTER AND JOHNSON COUNTER
	Ring Counter
	Johnson Counter
	Procedure (7)
	Truthtable (3)
	Ring Counter (1)
	DESIGN AND IMPLEMENTATION OF MULTIPLEXER AND DEMULTIPLEXER
	To design and implement multiplexer and demultiplexer.
	MULTIPLEXER:
	DEMULTIPLEXER:
	FUNCTION TABLE:
	Y = X S1’ S0’ + X S1’ S0 + X S1 S0’ + X S1 S0
	Procedure (8)
	Truth table for multiplexer using gates.
	Truth table for Demultiplexer using gates.
	Truth table for Multiplexer and Demultiplexer using ICs.
	Synchronous Counter
	Asynchronous Counter

