
 MODULE II

PROGRAM BASICS

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data

Types, Constants, Console IO Operations, printf and scanf .

Operators and Expressions: Expressions and Arithmetic Operators, Relational and

Logical Operators, Conditional operator, size of operator, Assignment operators and

Bitwise Operators. Operators Precedence

Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using

goto statement, While Loop, Do While Loop, For Loop, Break and Continue

statements.(Simple programs covering control flow)

What is a language?

Language is a system of conventional spoken, manual (signed), or written symbols by means

of which human beings express themselves.

What is program?

A computer program is a collection of instructions that can be executed by a computer to

perform a specific task.

What is a programming language?

A computer programming language is a language used to write computer programs, which

involves a computer performing some kind of computation.

C-Language

C programming is considered as the base for other programming languages, that is why it is

known as mother language.

Developed in 1972 by Dennis Ritchie at bell laboratories of AT&T (American Telephone &

Telegraph), located in the U.S.A.

Basic structure of C program

Documentation Section: The documentation section is the part of the program where the

programmer gives the details associated with the program.

Example

/*File Name: Helloworld.c

 Author: Aleena

 Date: 09/08/2019

 Description: a program to display hello world

*/

Link Section :This part of the code is used to declare all the header files that will be used in the

program. This leads to the compiler being told to link the header files to the system libraries.

Example : #include<stdio.h>

Definition Section : In this section, we define different constants. The keyword define is used

in this part.

Example : #define PI=3.14

Global Declaration Section : This part of the code is the part where the global variables are

declared. The user-defined functions are also declared in this part of the code.

Main Function Section : Every C-programs needs to have the main function. Function main()

is the starting point of every C program. Each main function contains 2 parts.

➢ A declaration part and an Execution part

The declaration part is the part where all the variables are declared. Execution part contains

the statements.

Sub Program Section : All the user-defined functions are defined in this section of the program.

Functions defined by the user are called user defined functions.

C- CHARACTER SET

Like any other language C has its own vocabulary and grammar.

As every language contains a set of characters used to construct words, statements, etc, C

language also has a set of characters.

C language character set contains the following set of characters.

➢ Alphabets

➢ Digits

➢ Special Symbols

➢ White Spaces

Alphabets

C language supports all the alphabets from the English language.

Lower and upper case letters together support 52 alphabets.

Lower case letters - a to z

Upper case letters - A to Z

Digits

C language supports 10 digits which are used to construct numerical values in C

language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > ,< \ | etc.,

White Spaces

Blank space, horizontal tab, newline character etc.

C PROGRAM TOKENS

Every C program is a collection of instructions and every instruction is a collection of some

individual units.

Every smallest individual unit of a C program is called token.

Every instruction in a C program is a collection of tokens.

Tokens are the basic building blocks of a C program.

Tokens include:

Keywords

Identifiers

Operators

Special Symbols

Constants

Strings

 Data values

Keywords

Keywords are specific reserved words in C each of which has a specific feature associated with

it.

All key words have fixed meaning and these meanings cannot be changed

 Keywords are always in lowercase.

There are total of 32 keywords in C:

Identifiers:

Every C word is classified as either a keyword or an identifier.

Identifiers refer to the names of variables; functions and arrays.

These are user-defined names and consist of a sequence of letters and digits with the letter as a

first character.

Rules:

1. May consists of alphabets, underscore and digits

2. First character should not be a digit.

3. Name must not contain blank space.

4. Name can have maximum upto 31 characters

5. No keyword should be used as identifiers

6. Case sensitive

CONSTANTS

Constants refer to fixed values that the program may not alter during its execution.

The types of constants are

Integer constant: These are whole numbers without any fractional part. It must have at least

one digit and must not contain any decimal point. It can be either positive or negative.

Examples are 426,+200,-760

Real or Floating point constants :These numbers have fractional part. These numbers are

shown in decimal notation

Examples are10.3, 20.2, 450.6

Single Character Constants: A Single character constant (character constant) is one character

enclosed in single quotes.

Examples are ‘A’, ’5’ ,’=’ .

A character constant have corresponding ASCII (American Standard Code for

Information Interchange) values. For example ASCII value of ‘A’ is 65 and ASCII value of

‘a’ is 97.

String constant: Multiple character constants are treated as

string constant.

A string constant is a sequence of characters surrounded by double quotes.

Examples are “abcd”, ”seena”.

Each string constant is by default (automatically) added with a special character ’\0’

which makes the end of a string. Thus the size of a string is

Number of characters + null character (‘\0’)

For example “abc” size is 4. Thus “abc” will be automatically represented as “abc\0” in

the memory.’\0’ is an end-of- string marker

Symbolic Constants

A symbolic constant is a name given to some numeric constant, or a character constant or string

constant, or any other constants.

When a program is compiled, each occurrence of a symbolic constant is replaced by its

corresponding character sequence.

Symbolic constants are usually defined at the beginning of a program.

Syntax: #define name value

Example: #define PI 3.14

#define MAX 500

PI,MAX are symbolic constants

VARIABLES

A variable is a data name that may be used to store a data value.

A variable may take different values at different times during execution.

Each variable has a specific storage location in memory where its value is stored. The variables

are called symbolic variables.

There are two values associated with a symbolic variable.

 Data value : value stored at some location in memory.

 Location value : This is the address in memory at which its data value is stored.

Variable A : data-value of A=10

location-value of A=1052

Variable C : data-value of C=25

location-value of C=1055

A variable name can be chosen by the programmer in a meaningful way so as to reflect its

function or nature in the program.

Some examples are –

Average, height, Total, counter_1, class_strength, house_name,etc.

DATA TYPES

Data types in the C programming language are used to specify what kind of value can be stored

in a variable.

The memory size and type of the value of a variable are determined by the variable data type.

In the C programming language, data types are classified as follows

Fundamental (primary) Data types

Derived Data types

User defined data types

Fundamental (primary) data types

1.int : for integers (2 byte memory space allocates in memory)

2.char : for characters(1 byte memory space allocates in memory)

3.float : for single precision floating point numbers(4 byte memory space allocates in memory)

4.double : for double precision floating point numbers(8 byte memory space allocates in

memory)

5.void: for empty set of values and non-returning functions. The void type has no value.

DATA TYPE MEMORY(BYTES) FORMAT SPECIFIER

int 2 %d

char 1 %c

float 4 %f

double 8 %lf

Derived data types - Derived data types are constructed from fundamental data types.

examples – arrays, functions, etc

User defined data types - It allows users to define an identifier that would represent an

existing data type.

examples – structure, union,etc

Variable Declaration

After designing suitable variable names, we must declare them to the compiler.

Declaration done two things:

- It tells the compiler what the variable name is

- It specifies what type of data the variable will hold

 All variables must be declared before they can appear in executable statements.

A declaration associates a group of variables with a specific data type.

A declaration consists of a data type, followed by one or more variable names, ending with a

semicolon.

Syntax : datatype variable-name v1,v2,….vn;

Example : int a,b,c ;

float d;

char e;

Variable Initialization

The process of giving initial values to variables is called initialization.

Example : int x=10;

float n=22.889;

char answer=’y’;

POINTS TO REMEMBER

➢ Every statement in C should end with a semicolon.

➢ In C everything is written in lower case. However upper case letters used for symbolic

names representing constants.

➢ #include is a pre-processor directive.

➢ stdio.h is a header file, for standard input output functions. It activate keyboard and

monitor.

➢ Single line comment is represented using //

➢ Multiple line comment is represented using /*……………….*/

➢ Comment lines are not executable statements and therefore anything between/*and*/

is ignored by the compiler.

➢ Execution begins from main ()

➢ main has no arguments(or Parameters)

➢ Every program must have exactly one main function.

➢ C permits different forms of main statements.

➢ They are

main ()

int main ()

void main ()

main (void)

void main (void)

int main (void)

PREPROCESSOR DIRECTIVES

The pre-processor is a program that processes the source code before it passes through the

compiler.

Before the source code passes through the compiler, it is examined by the pre-processor for any

pre-processor directives.

If there are any, appropriate actions are taken and then the source program is handed over to

the compiler. Some categories of directives are

#define -- macro substitution

#include -- File inclusion directives

Syntax

#include<file name>

Eg: #include<stdio.h>

#include<stdlib.h>

#include<math.h>

ESCAPE_SEQUENCES (BACKSLASH CHARACTER CONSTANTS)

These are special constants that are used in output functions.

For example ‘\n’ stands for newline character

VARIOUS INPUT/OUTPUT FUNCTIONS

These functions are used for input and output in C language.

1) printf()

The printf() function is used for output.

It prints the given statement to the console.

Syntax :

printf("format string",argument_list);

Examples :

printf (“%d”, a);

printf(“the result is :%d”,sum);

printf(“the value of A is %d\n the value of B is %d”,a,b);

printf (“S2 CSE PRGRAMMING IN C”);

2. scanf ()

The scanf() function function is used to take input from the user.

This function reads formatted input from the standard input such as keyboards.

scanf () means “scan formatted” .

Syntax :

scanf (“formatted string”, addressed variable);

Eg: scanf (“%d”, &a);

scanf (“%d%f”,&num1,&num2);

3. getchar ()

getchar () function reads a single character from standard input.

It takes no parameters and its returned value is the input character.

Syntax

variable name=getchar();

Eg: char c;

printf(“Enter a character”);

c=getchar ();

4. putchar()

 It displays a single character on the screen. This function takes one argument, which is the

character to be sent.

 It also returns this character as its result.

Syntax

putchar(variable_name);

Eg: char ans=’y’

putchar(ans);

5. gets() :receives a string from the keyboard.

gets(variable_name);

6. puts () : Outputs a string to the screen

puts (variable_name);

Eg: char vehicle [40];

printf(“Enter your vehicle name”);

gets(vehicle);

puts(vehicle);

These lines use the gets and puts to transfer the line of text into and out of the computer.

When this program is executed, it will give the same result as that with scanf and printf function

for input and output of given variable or array.

Sample programs

#include <stdio.h>

void main ()

{

printf("Hello welcome to C programming \n");

}

Output

Hello welcome to C programming

#include <stdio.h>

void main ()

{

printf("Hello welcome to\n C programming \n");

}

Output

Hello welcome to

C programming

OPERATORS AND EXPRESSIONS

Expression in C Program

An expression is a combination of operators and operands which reduces to a single value.

An Operation is performed on a data item which is called an Operand.

An Operator indicates an operation to be performed on data.

Example :

result=a+b*c

Program to read two integers

#include <stdio.h>

/*header files*/

void main () /* main

function*/

C OPERATORS

An operator is a symbol used to perform arithmetic and logical operations in a program.

C language is rich in built-in operators and provides the following types of operators −

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Increment & Decrement Operators

5. Assignment Operators

6. Bitwise Operators

7. Conditional Operator

8. Special Operators

Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction,

multiplication, division etc on numerical values (constants and variables).

Example:

a=10 and b=3

 S=a+b; S=10+3=13

 S=a-b; S=10-3=7

 S=a*b; S=10*3=30

 S=a/b; S=10/3=3

 S=a%b; S=10%3=1

Relational operators

Relational operators are used to compare two quantities and take certain decision depending

on that relation.

If the relation is true, it returns 1; if the relation is false, it returns 0

Relational operators are used in loops and decision making statements .

https://www.programiz.com/c-programming/c-for-loop
https://www.programiz.com/c-programming/c-if-else-statement

Example:

Let a=10 , b=5 and c=5

 a == b evaluated to 0

 a > b evaluated to 1

 a < b evaluated to 0

 a != b evaluated to 1

 a >= b evaluated to 1

 a <= b evaluated to 0

Logical Operators

Logical operators are used when more than one conditions are to be tested and based on that

result, decisions have to be made.

C programming offers three logical operators.

Example:

Let age=55 , salary=60,000

 (age=>50) && (salary>50,000)

 (age<60)||(salary<35,000)

 !(age>75)

Assignment operators

Assignment operators are used to assign result of an expression to a variable.

‘=’ is the assignment operator in C.

Syntax :

 variable_name = expression;

 eg: area=length*breadth;

 num1=10;

C also allows the use of shorthand assignment operators.

Shorthand operators take the form:

 var op = exp;

 var→variable, op→arithmetic operator,exp→ expression

 Eg : a+=1 same as a=a+1;

 Bitwise Operators

Bitwise operators are used for testing the bits or shifting them left or right.

To perform bit-level operations bitwise operators are used

The bitwise operators available in C are:

Bitwise AND Operator (&)

•The output of bitwise AND is 1
if the corresponding bits of two
operands is 1.

•The output of bitwise AND is 0
if either bit of an operand is 0.

OUT

PUT

Bitwise Compliment(~)

If the operand bit is 1 the result of bitwise compliment is 0.

If the operand bit is 0 the result of bitwise compliment is 1.

Bitwise OR Operator (|)

• The output of bitwise OR is 1 if
atleast 1 corresponding bit of
two operands is 1.

• The output of bitwise OR is 0 if
corresponding bit of two o

• perands is 0.
Bitwise XOR Operator(^)

• The result of bitwise XOR
operator is 1 if the
corresponding bits of two
operands are opposite.

Variable Decimal

Value

a 11 1011 1011 1011 1011

b 7 0111 0111 0111

a&b a|b a^b ~a

Output

INCREMENT AND DECREMENT OPERATORS

C programming has two operators increment ++ and decrement -- to increase or decrease the

value of a variable by 1.

Increment Operator (++) : increases the value of a variable by 1

Decrement Operator (--) : decreases the value of a variable by 1

These two operators are unary operators, meaning they only operate on a single operand.

Right Shift Operator(>>)

• Right Shift Operator shifts all
bits towards right by certain
number of specified bits.

• The bit positions that have been
vacated by right shift operator

Left Shift Operator(<<)

• Left Shift Operator shifts all bits
towards left by certain number
of specified bits.

• The bit positions that have been
vacated by left shift operator

Increment Operators: The increment operator is used to increment the value of a variable in

an expression.

Increment operators are of two types:

Pre-increment operator: Operator ++ is placed before the variable.

A pre-increment operator is used to increment the value of a variable before using it in a

expression.

In the Pre-Increment, value is first incremented and then used inside the expression.

Syntax: ++var;

 ++x; //++x is same as x=x+1

Example:

 int a=5;

 ++a;

 int x = 12, y=1;

 y = ++x; // Now y=13 and x=13

Post-increment operator: Operator ++ is placed after the variable.

A post-increment operator is used to increment the value of variable after executing expression

completely in which post increment is used.

In the Post-Increment, value is first used in a expression and then incremented.

Syntax: var++;

 x++;

Example:

int a=5;

 a++;

int x = 12, y = 1;

 y = x++; // Now y=12 and x=13

a = 2,b = 4,c = 3

 x = ++a+ b++ - ++c;

 Value of X =3

Decrement Operators: The decrement operator is used to decrement the value of a variable in an

expression.

Decrement operators are of two types:

Pre-Decrement operator: Operator -- is placed before the variable.

A pre-decrement operator is used to decrement the value of a variable before using it in a

expression.

In Pre-Decrement, value is first decremented and then used inside the expression.

Syntax: --var;

Eg: --x;

Example:

 int a=5;

--a;

 int x = 12, y = 1;

y = --x; // Now y=11 and x=11

Post-decrement operator: Operator -- is placed after the variable.

A post-decrement operator is used to decrement the value of variable after executing expression

completely in which post decrement is used.

In the Post-decrement , value is first used in a expression and then decrement .

Syntax: var--;

Eg: x--;

Example:

 int a=5;

a--;

 int x = 12, y = 1;

y = x--; // Now y=12 and x=11

 a = 2,b = 4,c = 5

x = --a+ b++ - c--;

Value of X =0

Conditional Operator (?:)

The conditional statements are the decision-making statements that depend upon the output of

the expression.

Conditional operator works on three operands, so it is also known as the ternary operator.

It starts with a condition, hence it is called a conditional operator.

Conditional operators return one value if condition is true and returns another value if

condition is false.

Syntax : expression1 ? expression2 : expression3;

Example : max = (num1 > num2) ? num1 : num2;

Example:

#include <stdio.h>

void main()

{

int x=1, y ;

y = (x ==1 ? 2 : 0) ;

printf(“Value of y is %d", y);

}

OUTPUT:

Value of y is 2

Write a C program to find the maximum in the given two numbers using the conditional operator.

#include<stdio.h>

int main()

{

int num1, num2, max;

printf("Enter two numbers: ");

scanf("%d%d", &num1, &num2);

max = (num1 > num2) ? num1 : num2;

printf("Maximum of %d and %d is %d", num1, num2, max);

}

OUTPUT:

Enter two numbers: 12 10

Maximum of 12 and 10 is 12

Special Operators

1.sizeof() operator:

This operator is used to compute the size of its operand.

Operand can be a variable, constant, any datatype, expression or array.

 When sizeof() is used with the variables, it returns the size of a variable.

When sizeof() is used with the data types, it simply returns the amount of memory allocated to

that data type.

Syntax : sizeof(a);

 sizeof(int);

#include <stdio.h>

int main()

{

int a = 16;

printf("Size of variable a : %d\n",sizeof(a));

printf("Size of int data type : %d\n",sizeof(int));

printf("Size of char data type : %d\n",sizeof(char));

printf("Size of float data type : %d\n",sizeof(float));

printf("Size of double data type : %d\n",sizeof(double));

}

OUTPUT :

Size of variable a : 2

Size of int data type : 2

Size of char data type : 1

Size of float data type : 4

Size of double data type : 8

2. Comma Operator (,)

• Comma operators are used to link related expressions together. Example: int a, c = 5, d;

3. Address of operator or reference operator (&):

• It is used to return the address of the variable.

 Example : &x

4. Pointer or dereference operator or indirection operator (*).

• It is used to return the value pointed by the pointer variable.

 Example : *x

Unary, Binary and Ternary Operators

• Unary operators have one operand to operate up on

 & Address operator ~ Bitwise complement

 ++ Increment ˉ ˉ decrement , etc

• Binary operators require two operands to operate up on.

 + Addition - Subtraction * Multiplication

 / Division % remainder (modulo division) , etc

• Ternary operators require three operands to operate up on.

 ?: Conditional operator

Operator Precedence
•Operator precedence come into

picture when in an expression
we need to decide which
operator will be evaluated first.

•Operator with highest priority
will be evaluated first.

• Associativity of operators come into picture when precedence of operators are same and we

need to decide which operator to evaluate first.

• Examples:

 1) x=3 * 4 % 5 / 2 2) x=3 * (4 % 5) / 2 3) a=3 * 4 + 5 * 6

Evaluate the following expression?

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Typecasting in C

Typecasting is converting one data type into another one.

It is also called as data conversion or type conversion.

Two types of Typecasting:

Implicit Type Conversion

Explicit Type Conversion

1.Implicit Type Conversion:

Compiler automatically converts one data type into another type. RULES

An arithmetic operation between an integer and integer always yields an integer result.

An operation between a real (float) and real operation is performed, the result is real.

An operation between an integer and real always yields a real result.

In this operation the integer is first promoted to a real and then the operation is performed.

Hence the result is real.

2. Explicit Type Conversion:

When data of one type is converted explicitly to another type.

Syntax : (type-name) expression

 Eg: b= (float) (x+y/2);

Cosider the code:

#include <stdio.h>

void main() {

int num1=5,count=2;

float avg;

 avg=num1/count;

printf("Average is %f",avg);

}

Write a C program to perform all arithmetic operations

#include <stdio.h>

void main()

{

 int num1, num2;

 int sum, sub, mult, mod,division;

 printf("Enter any two numbers: ");

 scanf("%d%d", &num1, &num2);

 // Perform all arithmetic operations

 sum = num1 + num2;

 sub = num1 - num2;

 mult = num1 * num2;

 division = num1 / num2;

 mod = num1 % num2;

 //Print result of all arithmetic operations

 printf("SUM = %d\n", sum);

 printf("DIFFERENCE = %d\n", sub);

 printf("PRODUCT = %d\n", mult);

 printf("QUOTIENT = %d\n",division);

 printf("Remainder = %d", mod);

}

#include<stdio.h>

void main()

{

 int a,b;

 printf("Enter the value of a and b");

 scanf("%d%d",&a,&b);

 // Uniary Operator

 printf("Unary Minus=%d\n",-a);

 // Binary Operator

 printf("Sum =%d\n",a+b);

 printf("Difference =%d\n”,a-b);

 printf("Mul =%d\n",a*b);

 printf("Division =%d\n",a/b);

 printf("Modulo =%d\n",a%b);

}

Write a C program to separate integer and decimal part

#include<stdio.h>

void main()

{

 float num,a;

 int i;

 printf("\n enter a float number :");

 scanf("%f",&num);

 i=num;

 a= num-i;

 printf("\n number=%f",num);

 printf("\n integer part=%i",i);

 printf("\n decimal part=%f",a);

}

Output:

 enter a float number :234.76

 number=234.76

 integer part=234

 decimal part=0.76

