
CST305 System Software Module 1

 Page 1

MODULE I

SYLLABUS

System Software vs Application Software, Different System Software– Assembler, Linker,

Loader, Macro Processor, Text Editor, Debugger, Device Driver, Compiler, Interpreter,

Operating System (Basic Concepts only). SIC & SIC/XE Architecture, Addressing modes, SIC

& SIC/XE Instruction set, Assembler Directives.

INTRODUCTION

Computer Software

A computer cannot do anything on its own. It must be instructed to do a job. So it’s

necessary to specify a sequence of instructions that a computer must perform to solve a

problem. Such a sequence of instructions written in a language understood by a computer is

called a computer program. Computer software is the collection of computer programs and

related data that provide instructions telling a computer what to do. Software is divided into 2

types:

1. System Software

2. Application Software

1. System Software

System Software is a set of programs that manages and supports the operation of a

computer. It controls the computer system and enhances its performance. It enables the

application software to interact with the system hardware. That is system software act as a

bridge between application software and computer hardware. Eg: Operating System, Compiler

etc. System software can be broadly classified into 3 types:

i. System Control Programs

ii. System Support Programs

iii. System Development Programs

i.System Control Programs: controls the execution of programs, manage the storage and

processing resources of the computer and perform other management and monitoring

functions. Eg: Operating System, Database Management Systems (DBMS).

CST305 System Software Module 1

 Page 2

ii. System Support Programs: provide routine service functions to the other computer

programs and computer users. Eg: utilities, libraries

iii.System Development Programs: assists in the creation of application programs. Eg:

Language translators like compiler, assembler.

I. Application Software:

Application software consists of programs designed to perform specific tasks for users.

.Eg: Media player, Ms. Word, Notepad etc. There are 2 types of application software:

i. General Purpose Application Software: These provide general user needs, not for a

specific purpose. Eg: Spreadsheet program like Microsoft Excel, which can be used to

perform different applications.

ii. Special Purpose (Custom) Application Software: Typically used for specific applications.

Eg: Turbo Tax, which is a special purpose application used to perform tax returns.

Relationship between system software and application software:

System software control and manages hardware thereby providing a platform for

application software to operate. Application software helps user to accomplish one or more

tasks using a computer through system software. For an application to run on a computer it

needs to be allocate space from memory, allocated resources (CPU time, hardware like

keyboard, display, printer etc), given access to system libraries, all of which is done by

operating system which is a system software.

Computer Hardware

System Software

Application Software

CST305 System Software Module 1

 Page 3

Differences between system software and application software (System

Software Vs Application Software):

Category Application Software System Software

Definition Application software is computer

software designed to help the user to

perform specific tasks

System software is computer

software designed to operate the

computer hardware and to

provide a platform for running

application software.

Purpose It is specific purpose software. It is general purpose software.

Environment Application Software performs in a

environment which created by

Operating System

System Software creates his own

environment to run itself and run

other application.

Execution

Time

It executes as and when required Some system software must

execute all the time in computer.

Essentiality Application software is not essential

for a computer.

System software is essential for

a computer

Number The number of application software is

much more than system software.

The number of system software

is less than application software.

Machine

dependent/

independent

Application software uses the computer for
solving problems. That is, its focus is on
application. So its machine independent.

System software is intended to
support the use and operation of a
computer. So it’s usually machine
dependent.

DIFFERENT SYSTEM SOFTWARE

1. Language Translators

a. Compiler

b. Interpreter

c. Assembler

d. Macro Preprocessor

2. Linker

3. Loader

4. Text Editor

5. Device Driver

6. Debugger

7. Operating Systems

8. Database Management Systems(DBMS)

CST305 System Software Module 1

 Page 4

1. Language Translators

It is the program that takes an input program in one language and produces an output

in another language.

Different language translators are:

a. Compiler

b. Interpreter

c. Assembler

d. Macropreprocessor

a. Compiler

A compiler is a program that translates programs written in any high level language (source

program) into its equivalent machine language program (target language). An important role

of the compiler is to report any errors in the source program that it detects during the translation

process.

b. Interpreter

An interpreter is also a language translator which converts source program in high level

language into machine language, just like compiler did. It reads the source code one line at a

time converts this line into machine code and executes it. The machine code is then discarded

and next line is processed. It stops translating after the first error.

Compilers, on the other hand, translates the entire program in one go and then executes

it. Compiler analyse the entire program, displays where errors have occurred. If errors are

present, then program cannot run.

Interpreter works as follows. The interpreter reads the source program and stores it in

memory. Program counter (PC) indicates which statement of the source program is to be

interpreted next. During interpretation, it takes a source statement, determines its meaning and

CST305 System Software Module 1

 Page 5

performs the actions and PC is incremented. The interpretation cycle consists of the following

steps:

• Fetch the statement.

• Analyze the statement and determine its meaning.

• Execute the meaning of the statement.

Advantages of interpreter:

 Easier to use particularly for beginners, since errors are immediately displayed.

.Disadvantage of interpreter:

Every line has to be translated every time it is executed, even if it is executed many times

as the program runs. Because of this interpreters tend to be slow.

Example for interpreters: Basic on older home computers, script interpreters such as

JavaScript.

c. Assembler

Assembler converts assembly language program into its equivalent machine language.

Assembly Language Machine Language

Example: MASM (8086 assembler)

d.Macro Preprocessor

A macro processor is a program that reads a file and scans them for certain keywords. When

a keyword is found, it is replaced by some text. The keyword/text combination is called a

macro. A simple example is the C language pre-processor:

#define max 100;

int i;

for (i=0; i<max; i++)

{

.........

}

The C prerocessor reads the first line and stores it as macro definition. When it comes across

the later reference of max in the for loop, it replaces with the macro definition 100. The output

of the C processor is then fed to the C compiler.

 Assembler

CST305 System Software Module 1

 Page 6

2. Linker

A linker is a program that combines object modules to form an executable program.

Many programming languages allow us to write different pieces of code, called modules,

separately. This simplifies the programming task because we can break a large program into

small, more manageable pieces. Eventually, though, we need to put all the modules together.

This is the job of the linker. In addition to combining modules, a linker also replaces

symbolic addresses with real addresses. Therefore, we may need to link a program even if it

contains only one module.

3. Loader

A loader is the part of an operating system that is responsible for loading programs. It

is one of the essential stages in the process of starting a program, as it places programs into

memory and prepares them for execution. Loading a program involves reading the contents of

the executable file containing the program instructions into memory, and then carrying out other

required preparatory tasks to prepare the executable for running. Once loading is complete, the

operating system starts the program by passing control to the loaded program code.

4. Text Editors

A text editor is a type of program used for editing plain text files. Text editors are

often provided with operating systems or software development packages. Example for text

editors are Microsoft word, gedit in Linux etc.

http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/M/module.html
http://www.webopedia.com/TERM/P/programming_language.html
http://www.webopedia.com/TERM/C/code.html
http://www.webopedia.com/TERM/M/module.html
http://www.webopedia.com/TERM/A/address.html
http://www.webopedia.com/TERM/L/link.html
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Executable

CST305 System Software Module 1

 Page 7

5. Debuggers

A debugger or debugging tool is a computer program that is used

to test and debug other programs.

6. Device Drivers

In computing, a device driver is a computer program that operates or controls a

particular type of device that is attached to a computer. A Device Driver is glue between an

OS and its I/O devices. They act as translators converting requests received from the operating

system into commands that the devices can understand.

7. Operating System

It is the most important system program that act as an interface between the users

and the system. It makes the computer easier to use. It provides an interface that is more user-

friendly than the underlying hardware.

 The functions of OS are:

1. Process management

2. Memory management

3. Resource management

4. I/O operations

5. Data management

6. Providing security to user’s job.

8. Database Management System

 A database is a collection of related data. Data can be considered as a piece of

information which can be recorded.

 Data Base Management System (DBMS) is a collection of programs that enables users

to create and maintain a database. It is general purpose software that facilitates the

processes of defining, constructing, manipulating and sharing of database among various

users and applications.

• Defining a database means specifying the data types, structures and

constraints for the data to be stored in the database.

• Constructing the database is the process of storing the data on some storage

medium that is controlled by the DBMS.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Computer_program

CST305 System Software Module 1

 Page 8

• Manipulating the database means processing the database. It includes

functions such as querying the database to retrieve specific data, updating

the database to reflect changes in the mini world and generating reports from

the data.

• Sharing a database allows multiple users and programs to access the

database concurrently.

 A Database System is a computerized record keeping system whose overall purpose

is to store information and to allow users to retrieve and update that information on demand.

Database system consists of a Database, Database Management System and an Application

program. An application program accesses the database by sending requests or queries for

data to the DBMS.

Fig: A Database System

THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC)

It is a hypothetical computer that has been carefully designed to include the hardware

features most often found in real machine. It comes in two versions:

• The standard model

CST305 System Software Module 1

 Page 9

• XE version

 SIC MACHINE STRUCTURE

Memory

• It consists of bytes(8 bits)

• Any 3 consecutive bytes form a word (24 bits) which are addressed by the location of

their lowest numbered byte.

• There are totally 215=32,768 bytes in memory.

Registers

SIC machines have 5 registers, each 24 bits long and having both a numeric and

character representation. The registers are:

• A (0): Used for basic arithmetic operations; known as the accumulator register.

• X (1): Used for addressing; known as the index register.

• L (2): Used for storing the return address of the jump of subroutine

 instructions (JSUB); known as the linkage register.

• PC (8): Contains the address of the next instruction to be executed; known as the

 program counter register.

• SW (9): Contains a variety of information, (such as carry or overflow flags)including

 a condition code (CC); known as the status word register.

(In the representation A (0) – A is the character representation for the accumulator register and

0 is the numeric representation. Similarly for other registers.)

Data formats

• Integers are stored as 24-bit binary numbers

• For storing negative numbers 2’s complement representation is used

• Characters are stored using their 8 bit ASCII codes.

• SIC do not support floating point data items.

Instruction Formats

• All machine instructions are of 24-bits length. It has following format:

CST305 System Software Module 1

 Page 10

• x is a flag bit used to indicate indexed-addressing mode.

If x=0, then direct addressing mode

If x=1, then indexed addressing mode/indirect addressing mode

Addressing modes

The term addressing modes refers to the way in which the operand of an instruction is

specified. Two types of addressing modes are available in SIC architecture, indicated by the

setting of x-bit in the instruction. They are

 1. Direct addressing mode

 2. Indexed addressing mode or indirect addressing mode

Addressing Mode Indication Target Address Calculation

Direct X=0 TA=address

Indexed/Indirect X=1 TA=address +(X)

• where (X) represents the contents of index register.

Instruction Set

 It includes instructions like:

1. Load and Store Registers (Data movement instruction)

• Ex: LDA, STA, LDX, STX.

• LDA – Load Accumulator, STA – Store the content of Accumulator to

specified location

• LDX – Load X Register, STX – Store the content of X Register to specified

location

2. Arithmetic operating instructions

• Ex: ADD, SUB, MUL, DIV.

• This involves register A and a word in memory, with the result being left in

the A register.

CST305 System Software Module 1

 Page 11

3. Compare Instruction

• Ex: COMP

• Instruction COMP compares a value in A with a word in memory, and sets

the condition code CC to indicate the result of <, > and =.

4. Branching instructions (Conditional Jump Instruction)

• Ex: JLT, JEQ, JGT.

• These instructions test the settings of CC and jump accordingly.

• JLT – Jump on Less than, JEQ- Jump on Equal, JGT – Jump on Greater than

5. Subroutine linkage instructions

• Ex: JSUB, RSUB

• JSUB jumps to the subroutine placing the return address in register L

• RSUB returns by jumping to the address contained in register L.

Input and Output Operations

• Input/Output is performed by transferring 1 byte at a time to or from the rightmost 8

bits of register A.

• Each device is assigned a unique 8-bit code

• There are 3 I/O instructions, each of which specifies device code as an operand.

1. TD (Test device)

- Tests whether the addressed device is ready to send or receive a byte of data

- The condition code is set to indicate the result of this test.

- If CC setting is < the device is ready, if setting is = device is not ready

2. RD (Read Data)

 - for reading data

3. WD (Write Data)

 - for writing data

• A program needing to transfer data must wait until the device is ready, and then execute

RD or WD.

CST305 System Software Module 1

 Page 12

• This sequence must be repeated for each byte of data to be read or written.

SIC/XE MACHINE STRUCTURE

Memory

• It consists of bytes(8 bits)

• Any 3 consecutive bytes form a word (24 bits) which are addressed by the location of

their lowest numbered byte.

• There are totally 220=1,048,576bytes (1 Mbyte) in memory.

Registers

• Totally 9 registers are available in SIC/XE

• All registers except Floating point accumulator are of 24 bits. Floating point

accumulator is of 48 bits.

Data formats

• Integers are stored as 24-bit binary numbers

• For storing negative numbers 2’s complement representation is used

• Characters are stored using their 8 bit ASCII codes.

• SIC/XE supports floating point data items. Floating point is stored in 48 bit signed-

exponent-fraction format

• The fraction is represented as a 36 bit number and has value between 0 and 1

CST305 System Software Module 1

 Page 13

• The exponent is represented as an 11 bit unsigned binary number between 0 and 2047.

• The sign of the floating point number is indicated by s: 0=positive, 1=negative.

• Therefore, the absolute floating point number value is: f*2(e-1024)

Instruction Format

There are 4 different instruction formats available in SIC/XE:

• Formats 1 and 2 do not reference memory at all

• Instruction format 3 and 4 introduce addressing mode flag bits.

 Flag e:

e=0 use Format 3

e=1 use Format 4

Flag p – indicates Program counter relative addressing

Flag b - indicates Base register relative addressing

Flag x – indicates indexing. (uses index register)

Flag i – indicates immediate addressing

Flag n – indicates indirect addressing

Instruction Set

SIC/XE supports all of the instructions that are available on standard SIC. SIC/XE

supports following instructions:

CST305 System Software Module 1

 Page 14

1. Load and Store Registers (Data movement instruction)

• Ex: LDCH, STCH, LDB, STB.

• LDCH – Load Accumulator with character, STCH – Store the character on

Accumulator to specified location.

• LDX – Load X Register, STX – Store the content of X Register to specified

location

2. Integer Arithmetic operating instructions

• Ex: ADD, SUB, MUL, DIV.

• This involves register A and a word in memory, with the result being left in

the A register.

3. Floating Point Arithmetic Instruction

• Ex: ADDF, SUBF, MULF, DIVF

• F- stands for Floating Point

4. Compare Instruction

• Ex: COMP

• Instruction COMP compares a value in A with a word in memory, and sets

the condition code CC to indicate the result of <, > and =.

5. Branching instructions (Conditional Jump Instruction)

• Ex: JLT, JEQ, JGT.

• These instructions test the settings of CC and jump accordingly.

• JLT – Jump on Less than, JEQ- Jump on Equal, JGT – Jump on Greater than

6. Subroutine linkage instructions

• Ex: JSUB, RSUB

• JSUB jumps to the subroutine placing the return address in register L

• RSUB returns by jumping to the address contained in register L.

7. Register Related Instructions

CST305 System Software Module 1

 Page 15

• This involves the instructions for register manipulation, operands-from-

registers and register-to-register arithmetic operations.

• Ex: RMO , COMPR, SHIFTR, ADDR, SUBR, MULR, DIVR, etc

RMO – Register Move Instruction

ADDR, SUBR, MULR, DIVR – Register Arithmetic operations

COMPR – Register Comparison

SHIFTR- Register Shift Operation

8. Supervisor Call Instruction (SVC)

• The instruction SVC generates an interrupt that can be used for

communicating with the operating system.

Input and Output Operations

• Input/Output is performed by transferring 1 byte at a time to or from the rightmost 8

bits of register A.

• Each device is assigned a unique 8-bit code

• There are 3 I/O instructions, each of which specifies device code as an operand.

1. TD (Test device)

- Tests whether the addressed device is ready to send or receive a byte of data

- The condition code is set to indicate the result of this test.

- If CC setting is < the device is ready, if setting is = device is not ready

2. RD (Read Data)

 - for reading data

3. WD (Write Data)

 - for writing data

• A program needing to transfer data must wait until the device is ready, and then execute

RD or WD.

• This sequence must be repeated for each byte of data to be read or written.

• SIC/XE has capability for programmed I/O. Programmed I/O means I/O devices may

input or output data while CPU is busy with other works.3 instructions are provided for

handling programmed I/O features:
SIO - Start I/O

CST305 System Software Module 1

 Page 16

HIO - Halt I/O

TIO - Test I/O

Addressing Modes

The term addressing modes refers to the way in which the operand of an instruction is

specified. Instruction format 3 and 4 introduce addressing mode flag bits.

Flag e:

e=0 use Format 3

e=1 use Format 4

Flag p – indicates Program counter relative addressing

Flag b - indicates Base register relative addressing

Flag x – indicates indexing. (uses index register)

Flag i – indicates immediate addressing

Flag n – indicates indirect addressing

1. Indexed Addressing Mode

• If x=1, then it indicates indexed addressing mode.

• In this addressing mode, the content of x register is added with address/disp for the

target address calculation.

TA=address +(X)

• Indexed addressing mode can be combined with PC relative and Base relative

addressing mode. In this case, the content of X register is also added for the target

address calculation.

• Indexing cannot be used with immediate or indirect addressing modes.

2. Immediate Addressing Mode

• If n=0 and i=1, then it indicates Immediate addressing mode.

CST305 System Software Module 1

 Page 17

• In this addressing mode, target address (TA) itself is used as the operand value.

• No memory reference is performed.

3. Indirect Addressing Mode

• If n=1 and i=0, then it indicates Indirect addressing mode.

• In this addressing mode, word at the location given by the target address is fetched. The

value contained in this word is then taken as the address of the operand value.

4. Simple Addressing Mode

• If n=0 and i=0, then it indicates simple addressing mode.

• In this addressing mode, TA is taken as the location of the operand

• If n=1 and i=1, it also indicates simple addressing mode(same as n=0 and i=0)

5. Program Counter Relative Addressing

• If b=0 and p=1, then it Indicates Program Counter (PC) relative addressing mode.

• In this addressing mode, the displacement given in instruction is added with the content

of program counter (PC) for obtaining the target address.

 TA = (PC) +disp

CST305 System Software Module 1

 Page 18

• Indexed addressing mode can be combined with PC relative addressing mode. In this

case, the content of X register is also added for the target address calculation.

TA = (PC) +(X) +disp

6. Base Relative Addressing Mode

• If b=1 and p=0, then it indicates Base relative addressing mode.

• In this addressing mode, the displacement given in instruction is added with the content

of base register for obtaining the target address.

TA= (B) +disp

• Indexed addressing mode can be combined with Base relative addressing mode. In

this case, the content of X register is also added for the target address calculation.

TA = (B) +(X) +disp

7. Direct Addressing Mode

• If x=0, then it indicates direct addressing mode.

• Then target address is the address/disp given in the instruction.

 TA=address

Examples of SIC/XE instructions and addressing modes

• Following figure gives examples of different addressing modes available on SIC/XE.

CST305 System Software Module 1

 Page 19

• The contents of B, PC and X registers are given as (B)=006000, (PC)= 003000 and

(X)=000090. All values are given in hexadecimal.

• Fig b gives the machine code for a series of LDA instruction (opcode for LDA is 00)

• The target address generated by each instruction and the value loaded into register A is

also shown

SIC Assembler Directives

Assembler directives are instructions that direct the assembler to do something.

The assembler directives in SIC are:

1. START

• Indicates the start of program.

• Used to define program name and starting address

• Eg: COPY START 1000

This means the program name is COPY and the starting address is 1000

2. END

• Used to indicate the end of program.

• Optionally indicates first executable instruction.

• Eg: END ALPHA

This means the program name ENDs at here. And the first executable

instruction is ALPHA

CST305 System Software Module 1

 Page 20

3. RESW

• Used to reserves specified word for a data area.

• Eg: ALPHA RESW 4

This is to reserve 4 words. (4 words means 4*3 =12 bytes)

4. RESB

• Used to reserves specified byte for a data area.

• Eg: A RESB 5

This is to reserve 5 bytes.

5. WORD

• Used to generate one word integer constant

• Eg: B WORD 6

This uses one word to store the integer constant 6 and the name B is assigned

to the first location

6. BYTE

• Generate character constant using required number of bytes

• Eg: ALPHA BYTE C ‘HAI’

This generates number of bytes needed to store HAI.

SIC/XE Programming Examples

Program 1 //Sample data movement

Write a sequence of instructions for SIC/XE which stores the value 5 in

ALPHA and the character Z in C1

LDA #5 Load value 5 into register A

STA ALPHA Store in ALPHA

LDCH #90 Load ASCII code for ‘Z’ into register A

STCH C1 Store in character variable C1

…

…

…

ALPHA RESW 1 Reserve one-word variable for ALPHA

C1 RESB 1 Reserve one-byte variable for ALPHA

Program 2 //Arithmetic operations

Write a sequence of instructions for SIC/XE which performs the following

computations BETA=ALPHA+INCR-1 and DELTA=GAMMA+INCR-1

CST305 System Software Module 1

 Page 21

LDS INCR Load value of INCR into register S

 LDA ALPHA Load ALPHA into register A

 ADDR S,A Add the value of INCR and ALPHA

 SUB #1 Subtract 1

 STA BETA Store in BETA

 LDA GAMMA Load GAMMA into register A

 ADDR S,A Add the value of INCR and GAMMA

 SUB #1 Subtract 1

 STA DELTA Store in DELTA

 …

 …

ALPHA RESW 1 One-word variables

BETA RESW 1

GAMMA RESW 1

DELTA RESW 1

INCR RESW 1

Program 3 // looping and indexing

Write a sequence of instructions for SIC/XE which copies one string to

another.

LDT #11 Initialize register T to 11

LDX #0 Initialize index register to 0

MOVECH LDCH STR1, X Load character from STR1 to reg A

 STCH STR2, X Store character into STR2

 TIXR T Add 1 to index compares result with register T

 JLT MOVECH Loop if index is less than 11 .

 …

 …

 …

STR1 BYTE C’TEST STRING’ 11 byte string constant

STR2 RESB 11 11 byte variable

CST305 System Software Module 1

 Page 22

Program 4 // looping and indexing

The variables ALPHA, BETA and GAMMA are arrays of 100 words each.

Write a sequence of instructions for SIC/XE which add together the

corresponding elements of ALPHA and BETA and storing the results in the

elements of GAMMA.

LDS #3 Initialize register S to 3

 LDT #300 Initialize register T to 300

 LDX #0 Initialize index register to 0

ADDLP LDA ALPHA, X load from ALPHA to reg A

 ADD BETA, X Add word from BETA

 STA GAMMA, X Store the result in A into GAMMA

 ADDR S, X Add 3 to index value

 COMPR X, T Compare new index value to 300

 JLT ADDLP Loop if index is less than 300

 ...

 ...

ALPHA RESW 100 Array variables—100 words each

BETA RESW 100

GAMMA RESW 100

Program 5 //Sample input and output operations

Write a sequence of instructions for SIC/XE which reads 1 byte of data from

device F1and copies it to device 05.

INLOOP TD INDEV Test input device

 JEQ INLOOP Loop until device is ready

 RD INDEV Read one byte into register A

 STCH DATA Store byte that was read

 ...

 ...

CST305 System Software Module 1

 Page 23

OUTLP TD OUTDEV Test output device

 JEQ OUTLP Loop until device is ready

 LDCH DATA Load data byte into register A

 WD OUTDEV Write one byte to output device

 ...

 ...

INDEV BYTE X’F1’ Input device number F1

OUTDEV BYTE X’05’ Output device number O5

DATA RESB 1 1 byte variable

Program 6 //Subroutine call

Write a subroutine to read a 100 –byte record from an input device into

memory.

-For the detailed explanation of program please go through the text book. (System Software –

An Introduction to Systems Programming – Leland L. Beck, page number 12 to 20)

	Assembler directives are instructions that direct the assembler to do something.
	The assembler directives in SIC are:
	1. START
	 Indicates the start of program.
	 Used to define program name and starting address
	 Eg: COPY START 1000
	This means the program name is COPY and the starting address is 1000
	2. END
	 Used to indicate the end of program.
	 Optionally indicates first executable instruction.
	 Eg: END ALPHA
	This means the program name ENDs at here. And the first executable instruction is ALPHA
	3. RESW
	 Used to reserves specified word for a data area.
	 Eg: ALPHA RESW 4
	This is to reserve 4 words. (4 words means 4*3 =12 bytes)
	4. RESB
	 Used to reserves specified byte for a data area.
	 Eg: A RESB 5
	This is to reserve 5 bytes.
	5. WORD
	 Used to generate one word integer constant
	 Eg: B WORD 6
	This uses one word to store the integer constant 6 and the name B is assigned to the first location
	6. BYTE
	 Generate character constant using required number of bytes
	 Eg: ALPHA BYTE C ‘HAI’
	This generates number of bytes needed to store HAI.

